| ntroduction to M PI

SHARCNET
Brock University
March 30, 2004



Brief History of Parallelism

e different approaches to paralleism: threading,
distributed...

e 15/20 years ago vendors had proprietary libraries
and compiler directives

e MPI 1.0 standard created in 1994 between
Industry and users to have a portable, open way
of writing parallel software



MPI Features

most general and flexible approach, giving the
most freedom to the application programmer

scales the best to many processors
portable across architectures and compilers

unfortunately, also the most work, requiring
significant rewriting of serial code and entirely
new algorithms



Structure of MPI

* MPI appears asalibrary of functions or
subroutines to the programmer, accessible from
either C/C++ or Fortran 77/90

* the basic operation in MPI isto send a message
containing data, from one process to another

 whilethereisasingle AP, there are multiple
implementations. MPICH, LAM, vendor-
supplied etc



MPI Codingl

* you need to make three subroutine calls to
Initialize MPI for your program:

MPI_INIT (ierr)

MPI_COMM_SIZE(MPI_COMM _WORLD,numprocs,ierr)

MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)

where ierr, numprocs and myid are integer's
e numprocs is the number of processors, and myid

IS my id number within this group of processors,
0..np-1



MPI Coding 2

 the actual message passing can be divided into
two main categories.

a) collective communications (broadcast, reduction,
scatter/gather)

b) point-to-point communications

e to finish an MPI program, one calls the
subroutine MPI_FINALIZE(ierr)



Parallel “ Hdallo, World”

program main

include 'mpif.h'

integer ierr,myid,numprocs

call MPI_INIT (ierr)

cal MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)
cal MPI_COMM_RANK(MPI_COMM _WORLD,myid,ierr)
write(*,*) 'Hello from process',myid

call MPI_FINALIZE(ierr)

stop

end



MPI Coding 3

* proadcast involves one process sending the same
message to all the other processes:.

MPI_BCAST (buffer,size,type,broadcaster,communicator,ierr)

e thetype can be one of MPl _INTEGER,
MPI _REAL, MPI_COMPLEX,

MPI_DOUBLE PRECISION etc

* MPI also permits user-defined data types



MPI Coding 4

e reductions take an element from each process and
perform an operation on it, like addition or
minimization:

MPI_REDUCE(argument,result,size,type,operation,location,communicator, ierr)

MPI_ALLREDUCE(argument,result,size,type,operation,communicator,ierr)

* the operation can be one of MPI_SUM,
MPI_PROD, MPI_MAX, MPI_MIN...

e again, MPI permits users to define their own
collective operations



MPI Coding 5

* point-to-point communications are carried out
using
MPI_SEND(buffer,size,type,destination,tag,communicator,ierr)

MPI_RECV (buffer,size,type,source,tag,communicator,status,ierr)

e tag IS a programmer-set integer used to
distinguish one message from another, and status
an integer array which can be used to query the
status of a message



MPI “ Ping pong”

e this Fortran 77 program simply passes an integer
back and forth between the pool of processes

e uninteresting scientifically, but it does help to
Illustrate the point-to-point MPI functions, and
can be used to get a rough estimate of the
network latency



Parallel Design

e the most difficult step I1s usually not the writing
of the parallel code, but coming up with a parallel
algorithm that is efficient, scalable and produces
correct output

e existence of aworking serial version can be of
some assistance, but often using MPI will require
a complete rewrite (and rethink) of the code



Parallel Design 2

 first step liesin identifying bottlenecks in the
serial code/algorithm, since it is these parts of the
code that we want to improve by parallelization,
for instance aloop:

for(i=0; i<N; ++i) {
// Lots of computations

}
e Wwe might consider trying to break thisloop up:



Parallel Design 3

stride = N/numprocs,
_Index = myid* stride;
J_Index = (1+myid)* stride;

for(i=l_index; i<u_index; ++i) {

// Do computations

}

* having done this, need to consider the kind of
data dependency inside the loop



Parallel Design 4

* It's highly probable that some data used in the
loop will need to be shared among the different
Processors

e thisanalysis of data dependenciesiswhat will
normally tell us about the messages that need to
be passed among processors

* Inthis example, we are breaking up the problem
geometry (e.g. the number of particles or mesh
points) INto pieces



Parallel Design 5

e an aternative strategy for some problems isto
use a master/slave model

* Inthis case, a master process keeps track of the
computation as awhole and hands out “ work
units’ to slave processes

* thisisideally suited to problems that can be
naturally broken up into such units, like Monte
Carlo agorithms



Performance

e the MPI callsin your program will always be far
slower than floating point operations, indexing of
arrays or other “ local” activity

* 30, IN general try to minimize the amount of
communication between processes

e when communicating, try to avoid many small
messages, and opt for afew large messages

* try to balance the computational burden across all
the processes



Parformance 2

e scaling refersto how well your program behaves
as the number of CPUs Is increased

* |dedlly, one would have
runtime(n) = seria_runtime/n
for n CPUs

* n reality, this never happens, because of such
things as communications overhead and the fact
that part of the program remains serial



Paerformance 3

e {0 ensure your program scales well, you need to
try to do as much “ local” work as possible, per
MPI call

e |atency vs. bandwidth

* Interconnect technologies. Ethernet, Myrinet,
Quadrics/ELAN

e debugging: TotalView on idra

e use non-blocking MPI calls



Future of MPI

e very widely supported standard for parallel
programming, more so than PVM

e MPI-2 standard was created in 1997, but so far
Implementations are lacking, especially for some
difficult functionality



