
Introduction to MPI

SHARCNET
Brock University
March 30, 2004

Brief History of Parallelism

● different approaches to parallelism: threading,
distributed...

● 15/20 years ago vendors had proprietary libraries
and compiler directives

● MPI 1.0 standard created in 1994 between
industry and users to have a portable, open way
of writing parallel software

MPI Features

● most general and flexible approach, giving the
most freedom to the application programmer

● scales the best to many processors

● portable across architectures and compilers

● unfortunately, also the most work, requiring
significant rewriting of serial code and entirely
new algorithms

Structure of MPI

● MPI appears as a library of functions or
subroutines to the programmer, accessible from
either C/C++ or Fortran 77/90

● the basic operation in MPI is to send a message
containing data, from one process to another

● while there is a single API, there are multiple
implementations: MPICH, LAM, vendor-
supplied etc

MPI Coding1

● you need to make three subroutine calls to
initialize MPI for your program:

MPI_INIT(ierr)

MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)

MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)

where ierr, numprocs and myid are integers

● numprocs is the number of processors, and myid
is my id number within this group of processors,
0...np-1

MPI Coding 2

● the actual message passing can be divided into
two main categories:

a) collective communications (broadcast, reduction,
scatter/gather)

b) point-to-point communications

● to finish an MPI program, one calls the
subroutine MPI_FINALIZE(ierr)

Parallel “ Hello, World”

program main

include 'mpif.h'

integer ierr,myid,numprocs

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)

write(*,*) 'Hello from process',myid

call MPI_FINALIZE(ierr)

stop

end

MPI Coding 3

● broadcast involves one process sending the same
message to all the other processes:

MPI_BCAST(buffer,size,type,broadcaster,communicator,ierr)

● the type can be one of MPI_INTEGER,
MPI_REAL, MPI_COMPLEX,
MPI_DOUBLE_PRECISION etc

● MPI also permits user-defined data types

●

MPI Coding 4

● reductions take an element from each process and
perform an operation on it, like addition or
minimization:

MPI_REDUCE(argument,result,size,type,operation,location,communicator,ierr)

MPI_ALLREDUCE(argument,result,size,type,operation,communicator,ierr)

● the operation can be one of MPI_SUM,
MPI_PROD, MPI_MAX, MPI_MIN...

● again, MPI permits users to define their own
collective operations

MPI Coding 5

● point-to-point communications are carried out
using

MPI_SEND(buffer,size,type,destination,tag,communicator,ierr)

MPI_RECV(buffer,size,type,source,tag,communicator,status,ierr)

● tag is a programmer-set integer used to
distinguish one message from another, and status
an integer array which can be used to query the
status of a message

MPI “ Ping pong”

● this Fortran 77 program simply passes an integer
back and forth between the pool of processes

● uninteresting scientifically, but it does help to
illustrate the point-to-point MPI functions, and
can be used to get a rough estimate of the
network latency

Parallel Design

● the most difficult step is usually not the writing
of the parallel code, but coming up with a parallel
algorithm that is efficient, scalable and produces
correct output

● existence of a working serial version can be of
some assistance, but often using MPI will require
a complete rewrite (and rethink) of the code

Parallel Design 2

● first step lies in identifying bottlenecks in the
serial code/algorithm, since it is these parts of the
code that we want to improve by parallelization,
for instance a loop:

for(i=0; i<N; ++i) {

 // Lots of computations

}

● we might consider trying to break this loop up:

Parallel Design 3

stride = N/numprocs;

l_index = myid*stride;

U_index = (1+myid)*stride;

for(i=l_index; i<u_index; ++i) {

 // Do computations

}

● having done this, need to consider the kind of
data dependency inside the loop

Parallel Design 4

● it's highly probable that some data used in the
loop will need to be shared among the different
processors

● this analysis of data dependencies is what will
normally tell us about the messages that need to
be passed among processors

● in this example, we are breaking up the problem
geometry (e.g. the number of particles or mesh
points) into pieces

Parallel Design 5

● an alternative strategy for some problems is to
use a master/slave model

● in this case, a master process keeps track of the
computation as a whole and hands out “ work
units” to slave processes

● this is ideally suited to problems that can be
naturally broken up into such units, like Monte
Carlo algorithms

Performance

● the MPI calls in your program will always be far
slower than floating point operations, indexing of
arrays or other “ local” activity

● so, in general try to minimize the amount of
communication between processes

● when communicating, try to avoid many small
messages, and opt for a few large messages

● try to balance the computational burden across all
the processes

Performance 2

● scaling refers to how well your program behaves
as the number of CPUs is increased

● ideally, one would have

runtime(n) = serial_runtime/n

for n CPUs

● in reality, this never happens, because of such
things as communications overhead and the fact
that part of the program remains serial

Performance 3

● to ensure your program scales well, you need to
try to do as much “ local” work as possible, per
MPI call

● latency vs. bandwidth

● interconnect technologies: Ethernet, Myrinet,
Quadrics/ELAN

● debugging: TotalView on idra

● use non-blocking MPI calls

Future of MPI

● very widely supported standard for parallel
programming, more so than PVM

● MPI-2 standard was created in 1997, but so far
implementations are lacking, especially for some
difficult functionality

