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Brief History of Parallelism

● different approaches to parallelism: threading, 
distributed...

● 15/20 years ago vendors had proprietary libraries 
and compiler directives

● MPI 1.0 standard created in 1994 between 
industry and users to have a portable, open way 
of writing parallel software



MPI Features

● most general and flexible approach, giving the 
most freedom to the application programmer

● scales the best to many processors

● portable across architectures and compilers

● unfortunately, also the most work, requiring 
significant rewriting of serial code and entirely 
new algorithms



Structure of MPI

● MPI appears as a library of functions or 
subroutines to the programmer, accessible from 
either C/C++ or Fortran 77/90 

● the basic operation in MPI is to send a message 
containing data, from one process to another

● while there is a single API, there are multiple 
implementations: MPICH, LAM, vendor-
supplied etc 



MPI Coding1

● you need to make three subroutine calls to 
initialize MPI for your program:

MPI_INIT(ierr)

MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)

MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)

where ierr, numprocs and myid are integers

● numprocs is the number of processors, and myid 
is my id number within this group of processors, 
0...np-1



MPI Coding 2

● the actual message passing can be divided into 
two main categories:

a) collective communications (broadcast, reduction, 
scatter/gather)

b) point-to-point communications

● to finish an MPI program, one calls the 
subroutine MPI_FINALIZE(ierr)



Parallel “ Hello, World”

program main

include 'mpif.h'

integer ierr,myid,numprocs

call MPI_INIT(ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)

write(*,*) 'Hello from process',myid

call MPI_FINALIZE(ierr)

stop

end



MPI Coding 3

● broadcast involves one process sending the same 
message to all the other processes:

MPI_BCAST(buffer,size,type,broadcaster,communicator,ierr)

● the type can be one of MPI_INTEGER, 
MPI_REAL, MPI_COMPLEX,  
MPI_DOUBLE_PRECISION etc

● MPI also permits user-defined data types

 

●



MPI Coding 4

● reductions take an element from each process and 
perform an operation on it, like addition or 
minimization:

MPI_REDUCE(argument,result,size,type,operation,location,communicator,ierr)

MPI_ALLREDUCE(argument,result,size,type,operation,communicator,ierr)

● the operation can be one of MPI_SUM, 
MPI_PROD, MPI_MAX, MPI_MIN...

● again, MPI permits users to define their own 
collective operations



MPI Coding 5

● point-to-point communications are carried out 
using 

MPI_SEND(buffer,size,type,destination,tag,communicator,ierr)

MPI_RECV(buffer,size,type,source,tag,communicator,status,ierr)

● tag is a programmer-set integer used to 
distinguish one message from another, and status 
an integer array which can be used to query the 
status of a message



MPI “ Ping pong”

● this Fortran 77 program simply passes an integer 
back and forth between the pool of processes

● uninteresting scientifically, but it does help to 
illustrate the point-to-point MPI functions, and 
can be used to get a rough estimate of the 
network latency 

   



Parallel Design

● the most difficult step is usually not the writing 
of the parallel code, but coming up with a parallel 
algorithm that is efficient, scalable and produces 
correct output

● existence of a working serial version can be of 
some assistance, but often using MPI will require 
a complete rewrite (and rethink) of the code



Parallel Design 2

● first step lies in identifying bottlenecks in the 
serial code/algorithm, since it is these parts of the 
code that we want to improve by parallelization, 
for instance a loop:

for(i=0; i<N; ++i) {

   // Lots of computations

}

● we might consider trying to break this loop up:



Parallel Design 3

stride = N/numprocs;

l_index = myid*stride;

U_index = (1+myid)*stride;

for(i=l_index; i<u_index; ++i) {

  // Do computations

}

● having done this, need to consider the kind of 
data dependency inside the loop



Parallel Design 4

● it's highly probable that some data used in the 
loop will need to be shared among the different 
processors

● this analysis of data dependencies is what will 
normally tell us about the messages that need to 
be passed among processors

● in this example, we are breaking up the problem 
geometry (e.g. the number of particles or mesh 
points) into pieces



Parallel Design 5

● an alternative strategy for some problems is to 
use a master/slave model

● in this case, a master process keeps track of the 
computation as a whole and hands out “ work 
units”  to slave processes 

● this is ideally suited to problems that can be 
naturally broken up into such units, like Monte 
Carlo algorithms



Performance

● the MPI calls in your program will always be far 
slower than floating point operations, indexing of 
arrays or other “ local”  activity

● so, in general try to minimize the amount of 
communication between processes

● when communicating, try to avoid many small 
messages, and opt for a few large messages

● try to balance the computational burden across all 
the processes



Performance 2

● scaling refers to how well your program behaves 
as the number of CPUs is increased

● ideally, one would have 

runtime(n) = serial_runtime/n

for n CPUs

● in reality, this never happens, because of such 
things as communications overhead and the fact 
that part of the program remains serial

 



Performance 3

● to ensure your program scales well, you need to 
try to do as much “ local”  work as possible, per 
MPI call

● latency vs. bandwidth

● interconnect technologies: Ethernet, Myrinet, 
Quadrics/ELAN

● debugging: TotalView on idra

● use non-blocking MPI calls



Future of MPI

● very widely supported standard for parallel 
programming, more so than PVM

● MPI-2 standard was created in 1997, but so far 
implementations are lacking, especially for some 
difficult functionality


