
Parallelization Tutorial

Daniel Stubbs
McMaster University/Sharcnet

July 8, 2004

Introduction

• Overview of parallelizing a “real” PDE
code, in Fortran 90, using MPI

• Assumes knowledge of programming,
as well as MPI basics

• Code and slides will be available on the
Sharcnet website after the talk

Motivation

• Do you need to parallelize?
• Serial codes are much easier to write,

debug and maintain
• MPI may not be the best solution to

your problem: OpenMP, script-based
serial job submission

• Will you be able to analyze results from
much larger problems?

Preparation 1

• Assuming we do need MPI, we often
begin from an existing serial code

• If so, it’s much easier if this serial code
is clean, modular and well-documented

• Ideally, one can isolate much of the
parallel communications and reuse
some of the original serial code

Preparation 2

• We will consider the following problem,

 in two dimensions, with appropriate initial and
boundary conditions

• Though not necessary, we’ll also assume
that all coefficients are constant

• In the serial version, we have used an
explicit 4th order Runge-Kutta solver

!

"f

"t
=#$2

f +%f + &f 3

Preparation 3

• We employ the usual finite difference
stencil for the spatial derivatives:

• Such an approximation means that we
need to know the value of the function
at the nearest neighbours to compute
the Laplacian at a point

!

"
2
f =

1

#x
2
fi+1, j + f i, j+1 + f i$1, j + f i, j$1 $ 4 f i, j()

Preparation 4

• With such a choice, it’s easy to see that
the principal bottleneck for the serial
code is computing the right-hand side
of the equation

• This is a triply nested loop, and so our
goal in parallelizing this serial code is
to somehow break apart this “loop nest”

Preparation 5

• In general, parallelizing the temporal loop is
out of the question, for obvious causal
reasons

• The result is the classic strategy for
parallelizing PDEs, to decompose the spatial
domain

• Each CPU will handle a given region of the
total space in which we want to solve the
equation

Caveats

• Clearly, having a very regular domain like a
square, and using a uniform rectangular
mesh, makes things much simpler

• With adaptive grids or irregular spatial
domains, much more care and work has to
go into this decomposition, to minimize
communications and balance the processor
load

Parallelization 1

• With the parallelization technique chosen, we
can begin thinking how to implement it in
code

• As a first approximation, we can begin by
breaking up the axis in two

• With the usual five point stencil for
approximating the second order spatial
derivatives, we have a single shared region

!

x

Parallelization 2

• At each time step, the two processes
will need to exchange the value of
along their mutual border

• This essentially establishes the
communication pattern for us, which
we can naively implement by a pair of
matching MPI_Send and MPI_Recv
calls

!

f (tn ,x,y)

Parallelization 3

• There’s a potential problem here
though, in using blocking MPI calls,
namely “deadlocking”

• If process 0 is waiting for its send to
complete at the same time that process
1 is waiting for its send to complete, the
program will appear to hang indefinitely

• So, need to consider some changes…

Parallelization 4

• We can avoid this with by sequencing the
send and receive, which works fine with just
two processors but can’t really be generalized

• A better alternative is to use some MPI calls
that don’t block, such as by the sequence
MPI_Irecv, MPI_Send and MPI_Wait

• For now, we stick with the simple solution of
alternating the send and receive statements

Parallelization 5

• This brings us to our first parallel
version of the original serial code

• While this MPI version is alright, it does
have some room for improvement:
– It only works with two processors
– All the constants are hard-coded
– No checkpointing

Testing

• Having created a parallel version of
your program, it’s important to
remember to verify its correctness

• Particularly if a program involves
random numbers, this will require some
work

• It’s important not just to check average
quantities or rely on visual inspection

Generalization 1

• To support more than two processors, we’ll
just divide the axis into n equal parts

• We will assume that the number of CPUs
divides evenly the number of points on each
axis

• Now most processors will have two sets of
ghost points to send and receive, which does
complicate the programming

Generalization 2

• This makes the use of non-blocking
MPI calls even more important

• The parameters are now read in from a
header file

• We checkpoint every 100 time steps,
by writing the current field state to disk

• This isn’t the complete program state,
but it’s good enough for our purposes

Generalization 3

• This is certainly a much better, flexible
program than our first MPI-based code

• Still, there are some performance issues that
could arise, mainly in terms of how we are
decomposing the square

• Since we don’t know how the CPUs are
wired together, we have no idea if our virtual
topology is optimal for this hardware
configuration

MPI Communicators

• A solution to this issue lies with using a
communicator other than the usual default
MPI_COMM_WORLD

• This puts MPI in charge of distributing the
logical data layout over the actual hardware

• It can also simplify using higher dimensional
decompositions of the spatial domain

• Now each processor has a rank within the
new communicator, as well as the standard
MPI_COMM_WORLD

Cartesian Communicator

• In this version of the program, we have a call
MPI_CART_CREATE

• This creates a new communicator for us, in
addition to the usual default communicator,
MPI_COMM_WORLD

• We also need a new technique to find out the
ranks of the two neighbouring processes,
MPI_CART_SHIFT, and of our own rank via
MPI_CART_GET

• Most times in 1-D, the ranks won’t change

Boundary Conditions

• At either end, this MPI_CART_SHIFT call will
return MPI_PROC_NULL

• This ensures correct behaviour here as we
have specified non-periodic boundary
conditions for this axis

• The actual data exchange is similar to what
we had before

• How does this code behave in terms of its
scaling?

Scaling & Decomposition

• As we use more processors, how much
communication will be required?

• With two processors, each one will need to
send 8*N bytes/iteration

• With four processors, this becomes 16*N
bytes/iteration, and in general, this remains
the same as we add processors

• In short, the amount of communication will
scale linearly with the number of processors,
very undesirable behaviour

Scaling, continued

• What about a two-dimensional
decomposition?

• In this case, with P processors, we have
2*N/Px + 2*N/Py with P = Px*Py

• We see that the amount of communication
starts to shrink as we increase the number of
processors, with this decomposition

• For such a finite difference algorithm, the
communications will be proportional to the
surface area of the processor cells

2-D Decomposition

• Happily, using the MPI Cartesian
communicator makes it relatively
painless to switch from a 1-D to a 2-D
decomposition

• The principal changes now are adding
a MPI_CART_SHIFT call to get the two
additional neighbours, and the added
MPI messages to swap ghost points

Conclusion

• With this change, we now have a parallel
solver for this nonlinear PDE that is robust,
flexible and scales well

• Some obvious improvements to the present
code:
– to handle situations in which N mod numprocs

isn’t zero
– to rewrite the code as a Fortran 90 module
– to make the disk I/O and checkpointing less of a

bottleneck

Conclusion, cont.

• For more complicated and realistic
geometries and meshes, there are various
libraries and toolkits available that may help

• Additional resources include Sharcnet staff,
books and the possibility of more extensive
courses on this and similar topics, such as in
Montreal this year

• At McMaster next summer?

