Parallelization Tutorial

Daniel Stubbs
McMaster University/Sharcnet
July 8, 2004



Introduction

* Overview of parallelizing a “real” PDE
code, in Fortran 90, using MPI

» Assumes knowledge of programming,
as well as MPI basics

 Code and slides will be available on the
Sharcnet website after the talk



Motivation

Do you need to parallelize?

Serial codes are much easier to write,
debug and maintain

MP| may not be the best solution to
your problem: OpenMP, script-based
serial job submission

Will you be able to analyze results from
much larger problems?



Preparation 1

* Assuming we do need MPI, we often
begin from an existing serial code

e |f sO, it's much easier if this serial code
IS clean, modular and well-documented

* |deally, one can isolate much of the
parallel communications and reuse
some of the original serial code



Preparation 2

* We will consider the following problem,

L oV f +of + ff
Jt

In two dimensions, with appropriate initial and
boundary conditions

* Though not necessary, we’'ll also assume
that all coefficients are constant

* In the serial version, we have used an
explicit 4th order Runge-Kutta solver



Preparation 3

* We employ the usual finite difference
stencil for the spatial derivatives:

1

sz (fi+1,j +fi,j+1+fi—1,j +fi,j—1_4fi,j)

* Such an approximation means that we
need to know the value of the function

at the nearest neighbours to compute
the Laplacian at a point

Vif =




Preparation 4

« With such a choice, it's easy to see that
the principal bottleneck for the serial
code is computing the right-hand side
of the equation

* This is a triply nested loop, and so our
goal in parallelizing this serial code is
to somehow break apart this “loop nest”



Preparation 5

* |In general, parallelizing the temporal loop is
out of the question, for obvious causal
reasons

* The result is the classic strategy for
parallelizing PDEs, to decompose the spatial
domain

« Each CPU will handle a given region of the
total space in which we want to solve the
equation



Caveats

* Clearly, having a very regular domain like a
square, and using a uniform rectangular
mesh, makes things much simpler

« With adaptive grids or irregular spatial
domains, much more care and work has to
go into this decomposition, to minimize
communications and balance the processor
load



Parallelization 1

* With the parallelization technique chosen, we
can begin thinking how to implement it in
code

* As a first approximation, we can begin by
breaking up the x axis in two

« With the usual five point stencil for
approximating the second order spatial
derivatives, we have a single shared region



Parallelization 2

» At each time step, the two processes
will need to exchange the value of f(z,.x.y)
along their mutual border

* This essentially establishes the
communication pattern for us, which
we can naively implement by a pair of
matching MPIl_Send and MPI_Recv
calls



Parallelization 3

* There’s a potential problem here
though, in using blocking MPI calls,
namely “deadlocking”

* If process O is waiting for its send to
complete at the same time that process
1 Is waiting for its send to complete, the
program will appear to hang indefinitely

* S0, need to consider some changes...



Parallelization 4

* We can avoid this with by sequencing the
send and receive, which works fine with just
two processors but can't really be generalized

* A better alternative is to use some MPI calls
that don’t block, such as by the sequence
MPI Irecv, MPl_Send and MPI|_Wait

* For now, we stick with the simple solution of
alternating the send and receive statements



Parallelization 5

» This brings us to our first parallel
version of the original serial code

* While this MPI version is alright, it does
have some room for improvement:

— It only works with two processors
— All the constants are hard-coded
— No checkpointing



Testing

* Having created a parallel version of
your program, it's important to
remember to verify its correctness

» Particularly if a program involves

random numbers, this will require some
work

* |t's important not just to check average
guantities or rely on visual inspection



Generalization 1

* To support more than two processors, we'll
just divide the axis into n equal parts

« We will assume that the number of CPUs
divides evenly the number of points on each
axis

 Now most processors will have two sets of

ghost points to send and receive, which does
complicate the programming



Generalization 2

This makes the use of non-blocking
MPI calls even more important

The parameters are now read in from a
header file

We checkpoint every 100 time steps,
by writing the current field state to disk

This isn’'t the complete program state,
but it's good enough for our purposes



Generalization 3

* This is certainly a much better, flexible
program than our first MPIl-based code

 Still, there are some performance issues that
could arise, mainly in terms of how we are
decomposing the square

« Since we don’'t know how the CPUs are
wired together, we have no idea if our virtual
topology is optimal for this hardware
configuration



MPI| Communicators

A solution to this issue lies with using a

communicator other than the usual default
MPI_ COMM_WORLD

This puts MPI in charge of distributing the
logical data layout over the actual hardware

It can also simplify using higher dimensional
decompositions of the spatial domain

Now each processor has a rank within the

new communicator, as well as the standard
MPI_COMM_WORLD



Cartesian Communicator

In this version of the program, we have a call
MPI_CART_CREATE

This creates a new communicator for us, in
addition to the usual default communicator,
MPI_ COMM_WORLD

We also need a new technique to find out the
ranks of the two neighbouring processes,
MPI_CART_SHIFT, and of our own rank via
MPI_CART_GET

Most times in 1-D, the ranks won’t change



Boundary Conditions

At either end, this MP1_CART_SHIFT call will
return MPlI. PROC_ NULL

This ensures correct behaviour here as we
have specified non-periodic boundary
conditions for this axis

The actual data exchange is similar to what
we had before

How does this code behave in terms of its
scaling?



Scaling & Decomposition

As we use more processors, how much
communication will be required?

With two processors, each one will need to
send 8*N bytes/iteration

With four processors, this becomes 16*N
bytes/iteration, and in general, this remains
the same as we add processors

In short, the amount of communication will
scale linearly with the number of processors,
very undesirable behaviour



Scaling, continued

What about a two-dimensional
decomposition?

In this case, with P processors, we have
2"N/Px + 2*N/Py with P = Px*Py
We see that the amount of communication

starts to shrink as we increase the number of
processors, with this decomposition

For such a finite difference algorithm, the
communications will be proportional to the
surface area of the processor cells



2-D Decomposition

» Happily, using the MPI Cartesian
communicator makes it relatively
painless to switch from a 1-D to a 2-D
decomposition

* The principal changes now are adding
a MPl_CART_SHIFT call to get the two
additional neighbours, and the added
MPI| messages to swap ghost points



Conclusion

« With this change, we now have a parallel
solver for this nonlinear PDE that is robust,
flexible and scales well

e Some obvious improvements to the present
code.

— to handle situations in which N mod numprocs
Isn’t zero

— to rewrite the code as a Fortran 90 module

— to make the disk /O and checkpointing less of a
bottleneck



Conclusion, cont.

* For more complicated and realistic
geometries and meshes, there are various
libraries and toolkits available that may help

« Additional resources include Sharcnet staff,
books and the possibility of more extensive
courses on this and similar topics, such as in
Montreal this year

At McMaster next summer?



