Solution 1 to problem N2f0b1o23w2
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem N2f0b1o23w2
Expressions
The solution is given through the following expressions:
q15=0
q14=0
q13=0
q12=0
q11=0
q10=0
q9=0
q8=0
q7=0
q6=0
1
---*p2*q1
2
q5=-----------
p4
q4=0
q3=0
q2=0
p6=0
p5=0
p3=0
p1=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
q1, p2, p4
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{p2,
g0061*p4 + g0063*p2,
g0011*q1 + g0013*p4,
g0023*q1 + g0025*p4,
p4,
2
g0035*p2*q1 + 2*g0039*p4*q1 + 2*g0040*p4 + 2*g0042*p2*p4,
q1,
g0054*p2 + 2*g0058*p4}
Relevance for the application:
The equation:
b = - D b*D b*p4 + b *b*p2
t 2 1 x
The symmetry:
1 2
- D b*D b*b*p4*q1 + ---*b *b *p2*q1
2 1 2 x
b =--------------------------------------
s p4
And now in machine readable form:
The system:
df(b(1),t)= - d(2,b(1))*d(1,b(1))*p4 + df(b(1),x)*b(1)*p2$
The symmetry:
df(b(1),s)=( - d(2,b(1))*d(1,b(1))*b(1)*p4*q1 + 1/2*df(b(1),x)*b(1)**2*p2*q1)/p4
$