Solution 3 to problem N2f1b0o35w2
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem N2f1b0o35w2
Expressions
The solution is given through the following expressions:
q27=0
q26=0
q25=0
q24=0
q23=0
q21=0
q20=0
q19=0
q18=0
q17=0
q16=0
q15=0
q14=0
q13=0
q12=0
q11=0
q10=0
q9=0
q8=0
q7=0
q6=0
q5=0
q4=0
q3=0
q2=0
q1=0
p5=0
p4=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
q22, p3, p1, p2
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{g0108*p3 + g0109*p2 + g0110*p1,
g0025*p2 + g0026*p1,
g0049*p3 + g0050*p2,
g0054*q22 + g0076*p3 + g0077*p2 + g0078*p1,
q22}
Relevance for the application:
The equation:
2 2
f =(D f) *f*p1 + D f*D f*f*p2 + (D f) *f*p3
t 2 2 1 1
The symmetry:
f =f *f *f*q22
s 2x x
And now in machine readable form:
The system:
df(f(1),t)=d(2,f(1))**2*f(1)*p1 + d(2,f(1))*d(1,f(1))*f(1)*p2 + d(1,f(1))**2*f(1
)*p3$
The symmetry:
df(f(1),s)=df(f(1),x,2)*df(f(1),x)*f(1)*q22$