Solution 2 to problem N2f0b1o23w1
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem N2f0b1o23w1
Expressions
The solution is given through the following expressions:
q17=0
q16=0
q15=0
q14=0
q13=0
q12=0
q10=0
q9=0
q8=0
q7=0
q6=0
q5=0
q4=0
q2=0
p6=0
p5=0
p4=0
p3=0
p2=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
q11, q3, q1, p1
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{g0025*q3 + g0027*q1 + g0030*p1,
g0011*q3 + g0013*q1 + g0016*p1,
p1,
g0035*q11 + g0043*q3 + g0045*q1 + g0049*p1,
g0056*q11 + g0064*q3 + g0066*q1}
Relevance for the application:
The equation:
b = - D b*D b*b*p1
t 2 1
The symmetry:
3 2
b = - D b*D b*b *q3 - D b*D b*b *q1 + b *b*q11
s 2 1 2 1 x x
And now in machine readable form:
The system:
df(b(1),t)= - d(2,b(1))*d(1,b(1))*b(1)*p1$
The symmetry:
df(b(1),s)= - d(2,b(1))*d(1,b(1))*b(1)**3*q3 - d(2,b(1))*d(1,b(1))*df(b(1),x)*q1
+ df(b(1),x)**2*b(1)*q11$