Solution 8 to problem N1f1b0o57w3
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem N1f1b0o57w3
Expressions
The solution is given through the following expressions:
q16=0
q15=0
q14=0
q13=0
q12=0
q11=0
q10=0
q9=0
q8=0
q7=0
q6=0
q3=0
q2=0
q1=0
p7=0
p6=0
p5=0
p4=0
p1=0
3*p2*q5
p3=---------
2*q4
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
q4, q5, p2
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{2*g0035*p3 + 3*g0036*p2,p2,g0044*p3 + g0045*p2}
Relevance for the application:
The equation:
3 2
Df *Df*f*p2*q4 + ---*(Df) *f *p2*q5
x 2 x
f =-------------------------------------
t q4
The symmetry:
2 3
f =Df *(Df) *f*q4 + (Df) *f *q5
s x x
And now in machine readable form:
The system:
df(f(1),t)=(d(1,df(f(1),x))*d(1,f(1))*f(1)*p2*q4 + 3/2*d(1,f(1))**2*df(f(1),x)*
p2*q5)/q4$
The symmetry:
df(f(1),s)=d(1,df(f(1),x))*d(1,f(1))**2*f(1)*q4 + d(1,f(1))**3*df(f(1),x)*q5$