Solution 1 to problem N1t8s12f1
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem N1t8s12f1
Expressions
The solution is given through the following expressions:
q35=0
q34=0
q33=0
q32=0
q31=0
q30=0
q29=0
q28=0
q27=0
q26=0
q25=0
q24=0
q23=0
q22=0
q21=0
q19=0
q18=0
q17=0
q16=0
q15=0
q14=0
q13=0
q12=0
q11=0
q10=0
q9=0
q8=0
q7=0
q6=0
q5=0
q4=0
q3=0
q2=0
q1=0
p13=0
p11=0
p10=0
p9=0
p8=0
p7=0
p6=0
p4=0
p3=0
p2=0
p1=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
q20, p12, p5
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{p5,q20,g0087*p12 + g0094*p5,g0019*q20 + g0039*p12 + g0046*p5}
Relevance for the application:
The equation:
4
f =(Df) *f*p5 + f *f *f*p12
t 2x x
The symmetry:
2
f =(Df) *f *f *f*q20
s 2x x
And now in machine readable form:
The system:
df(f(1),t)=d(1,f(1))**4*f(1)*p5 + df(f(1),x,2)*df(f(1),x)*f(1)*p12$
The symmetry:
df(f(1),s)=d(1,f(1))**2*df(f(1),x,2)*df(f(1),x)*f(1)*q20$