Solution 3 to problem N1t6s8f1


Expressions | Parameters | Inequalities | Relevance | Back to problem N1t6s8f1

Expressions

The solution is given through the following expressions:

q13=0


q12=0


q11=0


q10=0


q9=0


q8=0


q7=0


     2
    ---*p4*q4
     3
q6=-----------
       p2


q5=0


q3=0


q2=0


q1=0


p7=0


p6=0


p5=0


p3=0


p1=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 q4, p4, p2

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{2*g0030*p4 + 3*g0032*p2,

 q4,

                                                           2
 2*g0011*p4*q4 + 3*g0013*p2*q4 + 3*g0019*p2*p4 + 3*g0021*p2 ,

 p2,

 g0039*p4 + g0041*p2}


Relevance for the application:



The equation: 


                     2
f =Df *Df*f*p2 + (Df) *f *p4
 t   x                  x
The symmetry:
            2            2      3
    Df *(Df) *f*p2*q4 + ---*(Df) *f *p4*q4
      x                  3         x
f =----------------------------------------
 s                    p2
And now in machine readable form:

The system:

df(f(1),t)=d(1,df(f(1),x))*d(1,f(1))*f(1)*p2 + d(1,f(1))**2*df(f(1),x)*p4$
The symmetry:
df(f(1),s)=(d(1,df(f(1),x))*d(1,f(1))**2*f(1)*p2*q4 + 2/3*d(1,f(1))**3*df(f(1),x
)*p4*q4)/p2$