Solution 3 to problem N1f0b1o35w2
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem N1f0b1o35w2
Expressions
The solution is given through the following expressions:
q16=0
q15=0
q14=0
q13=0
1 1
---*p3*q2 + ---*p5*q2
3 6
q12=-----------------------
p5
q11=0
q10=0
q9=0
q8=0
q7=0
q6=0
q5=0
q4=0
q3=0
q1=0
p6=0
p4=0
p2=0
p1=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
q2, p5, p3
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{2*g0015*p3 + g0015*p5 + 6*g0025*p5,q2,g0028*p5 + g0030*p3,g0008*q2 + g0010*p5,
p5}
Relevance for the application:
The equation:
2
b =Db *Db*p5 + b *p3
t x x
The symmetry:
1 3 1 3
Db *Db*b *p5*q2 + ---*b *p3*q2 + ---*b *p5*q2
x x 3 x 6 x
b =-------------------------------------------------
s p5
And now in machine readable form:
The system:
df(b(1),t)=d(1,df(b(1),x))*d(1,b(1))*p5 + df(b(1),x)**2*p3$
The symmetry:
df(b(1),s)=(d(1,df(b(1),x))*d(1,b(1))*df(b(1),x)*p5*q2 + 1/3*df(b(1),x)**3*p3*q2
+ 1/6*df(b(1),x)**3*p5*q2)/p5$