Solution 2 to problem N2f0b1o23w1


Expressions | Parameters | Inequalities | Relevance | Back to problem N2f0b1o23w1

Expressions

The solution is given through the following expressions:

q17=0


q16=0


q15=0


q14=0


q13=0


q12=0


q10=0


q9=0


q8=0


q7=0


q6=0


q5=0


q4=0


q2=0


p6=0


p5=0


p4=0


p3=0


p2=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 q11, q3, q1, p1

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{g0025*q3 + g0027*q1 + g0030*p1,

 g0011*q3 + g0013*q1 + g0016*p1,

 p1,

 g0035*q11 + g0043*q3 + g0045*q1 + g0049*p1,

 g0056*q11 + g0064*q3 + g0066*q1}


Relevance for the application:



The equation: 


b = - D b*D b*b*p1
 t     2   1
The symmetry:
               3                        2
b = - D b*D b*b *q3 - D b*D b*b *q1 + b  *b*q11
 s     2   1           2   1   x       x
And now in machine readable form:

The system:

df(b(1),t)= - d(2,b(1))*d(1,b(1))*b(1)*p1$
The symmetry:
df(b(1),s)= - d(2,b(1))*d(1,b(1))*b(1)**3*q3 - d(2,b(1))*d(1,b(1))*df(b(1),x)*q1
 + df(b(1),x)**2*b(1)*q11$