Solution 3 to problem N2f1b0o35w2


Expressions | Parameters | Inequalities | Relevance | Back to problem N2f1b0o35w2

Expressions

The solution is given through the following expressions:

q27=0


q26=0


q25=0


q24=0


q23=0


q21=0


q20=0


q19=0


q18=0


q17=0


q16=0


q15=0


q14=0


q13=0


q12=0


q11=0


q10=0


q9=0


q8=0


q7=0


q6=0


q5=0


q4=0


q3=0


q2=0


q1=0


p5=0


p4=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 q22, p3, p1, p2

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{g0108*p3 + g0109*p2 + g0110*p1,

 g0025*p2 + g0026*p1,

 g0049*p3 + g0050*p2,

 g0054*q22 + g0076*p3 + g0077*p2 + g0078*p1,

 q22}


Relevance for the application:



The equation: 


        2                            2
f =(D f) *f*p1 + D f*D f*f*p2 + (D f) *f*p3
 t   2            2   1           1
The symmetry:
f =f  *f *f*q22
 s  2x  x
And now in machine readable form:

The system:

df(f(1),t)=d(2,f(1))**2*f(1)*p1 + d(2,f(1))*d(1,f(1))*f(1)*p2 + d(1,f(1))**2*f(1
)*p3$
The symmetry:
df(f(1),s)=df(f(1),x,2)*df(f(1),x)*f(1)*q22$