Solution 2 to problem N2f0b1o23w2


Expressions | Parameters | Inequalities | Relevance | Back to problem N2f0b1o23w2

Expressions

The solution is given through the following expressions:

q15=0


q14=0


q13=0


q12=0


q11=0


q10=0


q9=0


q8=0


q7=0


q5=0


q4=0


q3=0


q2=0


p6=0


p5=0


p3=0


p2=0


p1=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 q6, q1, p4

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{g0011*q1 + g0013*p4,

 g0023*q1 + g0025*p4,

 p4,

 g0034*q6 + g0039*q1 + g0040*p4,

 g0053*q6 + g0058*q1}


Relevance for the application:



The equation: 


b = - D b*D b*p4
 t     2   1
The symmetry:
                       2
b = - D b*D b*b*q1 + b  *q6
 s     2   1          x
And now in machine readable form:

The system:

df(b(1),t)= - d(2,b(1))*d(1,b(1))*p4$
The symmetry:
df(b(1),s)= - d(2,b(1))*d(1,b(1))*b(1)*q1 + df(b(1),x)**2*q6$