Solution 1 to problem N1f1b0o36w1
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem N1f1b0o36w1
Expressions
The solution is given through the following expressions:
q35=0
q34=0
q33=0
q32=0
q31=0
q30=0
q29=0
q28=0
q27=0
1
q26= - ---*q19
3
q25=0
q24=0
q23=0
q22=0
q21=0
q20=0
q18=0
q17=0
q16=0
q15=0
q14=0
q13=0
q12=0
q11=0
q10=0
q9=0
q8=0
q7=0
q6=0
q5=0
q4=0
q3=0
q2=0
q1=0
p7=0
p6=0
p5=0
p4=0
p2=0
p1=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
q19, p3
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{p3,q19,g0011*q19 - 3*g0018*q19 - 3*g0040*p3}
Relevance for the application:
The equation:
3
f =(Df) *f*p3
t
The symmetry:
1
f =Df *f *f *f*q19 - ---*Df*f *f *f*q19
s x 2x x 3 3x x
And now in machine readable form:
The system:
df(f(1),t)=d(1,f(1))**3*f(1)*p3$
The symmetry:
df(f(1),s)=d(1,df(f(1),x))*df(f(1),x,2)*df(f(1),x)*f(1)*q19 - 1/3*d(1,f(1))*df(f
(1),x,3)*df(f(1),x)*f(1)*q19$