Solution 1 to problem N2f0b1o35w4
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem N2f0b1o35w4
Expressions
The solution is given through the following expressions:
q16=0
q15=0
q14=0
q13=0
q12=0
q11=0
q10=0
q9=0
1
---*p1*q1
2
q8=-----------
p3
q7=0
q6=0
q5=0
q4=0
q3=0
q2=0
p5=0
p4=0
p2=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
q1, p1, p3
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{g0027*q1 + g0029*p3,
g0013*q1 + g0015*p3,
p3,
2
g0037*p1*q1 + 2*g0044*p3*q1 + 2*g0045*p3 + 2*g0047*p1*p3,
q1,
g0056*p1 + 2*g0063*p3,
g0066*p3 + g0068*p1}
Relevance for the application:
The equation:
b = - D b*D b*p3 + b *b*p1
t 2 1 x
The symmetry:
1 2
- D b*D b*b*p3*q1 + ---*b *b *p1*q1
2 1 2 x
b =--------------------------------------
s p3
And now in machine readable form:
The system:
df(b(1),t)= - d(2,b(1))*d(1,b(1))*p3 + df(b(1),x)*b(1)*p1$
The symmetry:
df(b(1),s)=( - d(2,b(1))*d(1,b(1))*b(1)*p3*q1 + 1/2*df(b(1),x)*b(1)**2*p1*q1)/p3
$