Solution 2 to problem N2f0b1o23w2
Expressions |
Parameters |
Inequalities |
Relevance |
Back to problem N2f0b1o23w2
Expressions
The solution is given through the following expressions:
q15=0
q14=0
q13=0
q12=0
q11=0
q10=0
q9=0
q8=0
q7=0
q5=0
q4=0
q3=0
q2=0
p6=0
p5=0
p3=0
p2=0
p1=0
Parameters
Apart from the condition that they must not vanish to give
a non-trivial solution and a non-singular solution with
non-vanishing denominators, the following parameters are free:
q6, q1, p4
Inequalities
In the following not identically vanishing expressions are shown.
Any auxiliary variables g00?? are used to express that at least
one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3
means that either p4 or p3 or both are non-vanishing.
{g0011*q1 + g0013*p4,
g0023*q1 + g0025*p4,
p4,
g0034*q6 + g0039*q1 + g0040*p4,
g0053*q6 + g0058*q1}
Relevance for the application:
The equation:
b = - D b*D b*p4
t 2 1
The symmetry:
2
b = - D b*D b*b*q1 + b *q6
s 2 1 x
And now in machine readable form:
The system:
df(b(1),t)= - d(2,b(1))*d(1,b(1))*p4$
The symmetry:
df(b(1),s)= - d(2,b(1))*d(1,b(1))*b(1)*q1 + df(b(1),x)**2*q6$