Solution 1 to problem N1f1b0o23w1


Expressions | Parameters | Inequalities | Relevance | Back to problem N1f1b0o23w1

Expressions

The solution is given through the following expressions:

     2
    ---*p4*q6
     3
q7=-----------
       p3


q5=q6


     1
    ---*p3*q6
     2
q4=-----------
       p4


q3=0


q2=0


q1=0


p2=0


p1=0


Parameters

Apart from the condition that they must not vanish to give a non-trivial solution and a non-singular solution with non-vanishing denominators, the following parameters are free:
 q6, p4, p3

Inequalities

In the following not identically vanishing expressions are shown. Any auxiliary variables g00?? are used to express that at least one of their coefficients must not vanish, e.g. g0019*p4 + g0020*p3 means that either p4 or p3 or both are non-vanishing.
 
{q6,

 p4,

 p3,

 g0019*p4 + g0020*p3,

 2*g0003*p4*q6 + 2*g0004*p4*q6 + g0005*p3*q6 + 2*g0009*p3*p4,

           2                                             2
 4*g0012*p4  + 6*g0013*p3*p4 + 6*g0014*p3*p4 + 3*g0015*p3 }


Relevance for the application:



The equation: 
f =Df*f *p3 + f  *p4
 t     x       2x
The symmetry:
                       1      2      2                         2        2
    Df *f *p3*p4*q6 + ---*(Df) *f *p3 *q6 + Df*f  *p3*p4*q6 + ---*f  *p4 *q6
      x  x             2         x              2x             3   3x
f =--------------------------------------------------------------------------
 s                                   p3*p4
And now in machine readable form:

The equation:

df(f(1),t)=d(1,f(1))*df(f(1),x)*p3 + df(f(1),x,2)*p4$
The symmetry:
df(f(1),s)=(d(1,df(f(1),x))*df(f(1),x)*p3*p4*q6 + 1/2*d(1,f(1))**2*df(f(1),x)*p3
**2*q6 + d(1,f(1))*df(f(1),x,2)*p3*p4*q6 + 2/3*df(f(1),x,3)*p4**2*q6)/(p3*p4)$