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Conservation laws and symmetries of quasilinear radial
wave equations in multi-dimensions

Stephen C. Anco, Steven A. MacNaughton, and Thomas Wolf
Department of Mathematics, Brock University, St. Catharines, Ontario L2S 3A1, Canada

(Received 14 October 2011; accepted 18 April 2012; published online 18 May 2012)

Symmetries and conservation laws are studied for two classes of physically and
analytically interesting radial wave equations with power nonlinearities in multi-
dimensions. The results consist of two main classifications: all symmetries of point
type and all conservation laws of a general energy-momentum type are explicitly
determined, including those such as dilations, inversions, similarity energies, and
conformal energies that exist only for special powers or dimensions. In particular,
all variational cases (when a Lagrangian formulation exists) and non-variational
cases (when no Lagrangian exists) for these wave equations are considered. As
main results, the classification yields generalized energies and radial momenta in
certain non-variational cases, which are shown to arise from a new type of Morawetz
dilation identity that produces conservation laws for each of the two classes of wave
equations in a different way than Noether’s theorem. C© 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4711814]

I. INTRODUCTION

Symmetries and conservation laws are important tools in the study of global analysis of nonlinear
wave equations

utt = g(x, u,∇u) · (∇2u) + f (x, u,∇u) (1)

for u(t, x) in n ≥ 1 spatial dimensions (where x denotes Cartesian coordinates).
As pointed out in Refs. 16 and 5, conservation laws such as energy provide basic conserved

quantities used in obtaining estimates on |u| or |∇u| for classical solutions, and also in defining
suitable norms for weak solutions. Of considerable interest are extra conservation laws such as
conformal energies that can appear in the case of power nonlinearities |u|p or derivative nonlinearities
|∇u|p in g and f for special powers p depending on the dimension n. Symmetries, in contrast, lead
to exact group-invariant solutions and play a role in defining invariant Sobolev norms. Scaling
symmetries are of special relevance, as the critical nonlinearity power for a blow-up is typically
singled out by scaling-invariance of a positive energy norm. Moreover, scaling transformation
arguments give a means of relating the behavior of solutions in different regimes, for instance,
solutions at short times with large initial data can be scaled to long times with small initial data when
the nonlinearity power is subcritical.

In previous work in Ref. 5, conservation laws and symmetries have been classified for semilinear
wave equations

utt = �u + au p (2)

with a power nonlinearity in n > 1 spatial dimensions. In the present paper and a sequel, we extend
those classifications to a variety of physically and analytically interesting quasilinear wave equations

utt = ∇ ·
((

c + a

p
u p

)∇u
)

+ (
b − a

p

)
u p�u (3a)

0022-2488/2012/53(5)/053703/33/$30.00 C©2012 American Institute of Physics53, 053703-1

http://dx.doi.org/10.1063/1.4711814
http://dx.doi.org/10.1063/1.4711814
http://dx.doi.org/10.1063/1.4711814


053703-2 Anco, MacNaughton, and Wolf J. Math. Phys. 53, 053703 (2012)

and

utt = ∇ ·
((

c + a

p
|∇u|p

)∇u
)

+ (
b − a

p

)|∇u|p�u (3b)

contained in the general class (1), with free constants a, b, c, where p �= 0 is the nonlinearity power
and n > 1 is the spatial dimension. These wave equations can be written respectively in the equivalent
forms

utt = (c + bu p)�u + au p−1|∇u|2 (4a)

and

utt = (c + b|∇u|p)�u + 1
2 a|∇u|p−2(∇u · ∇)2u, (4b)

which are valid for any power p. There has been a considerable mathematical interest in the analysis
(e.g., global existence, uniqueness, regularity, blow up) of solutions to the Cauchy problem for
translationally-invariant quasilinear wave equations in multi-dimensions,1, 15 particularly for radially
symmetric initial data. The two classes of wave equations (4a)–(4b) studied here provide the simplest
such examples having homogeneous power nonlinearities.

To begin, we will consider the radial reduction of the wave equations (4a) and (4b) for u(t, r),
where r = |x| is the radial coordinate in Rn . This reduction yields

utt = (c + bu p)
(
urr + n − 1

r
ur

) + au p−1u2
r (5a)

and

utt = (c + (b + a)u p
r )

(
urr + n − 1

r
ur

) − a
n − 1

r
u p+1

r , (5b)

respectively, which are radial wave equations belonging to the general class

utt = g(r, u, ur )urr + f (r, u, ur ), (6)

where

g = c + bu p, f = n − 1

r
(c + bu p)ur + au p−1u2

r (7a)

for equation (5a), and where

g = c + (b + a)u p
r , f = n − 1

r
(cur + bu p+1

r ) (7b)

for equation (5b). We note that the class (7a) is quasilinear hyperbolic iff bp �= 0 or is semilinear
hyperbolic iff bp = 0, a �= 0, and c + b �= 0; and the class (7b) is quasilinear hyperbolic iff
(b + a)p �= 0 or is semilinear hyperbolic iff b + a = 0, bc �= 0, and p(p + 1) �= 0.

These classes (7a) and (7b) of radial wave equations describe models for nonlinear radial wave
propagation in which the wave speed can depend on the wave amplitude or its radial gradient.
Such models encompass a wide variety of physically interesting examples in n = 2 and n = 3
dimensions: for class (7a), radial compressible polytropic fluid flow in Lagrangian coordiantes13 and
radial propagation of voltage/current in electromagnetic transmission guides;11 and for class (7a),
radial nonlinear vibrations of membranes and radial deformations of hyperelastic materials.10, 12 The
extension of these examples to arbitrary n > 1 dimensions is mathematically natural in light of the
analytical interest in n-dimensional quasilinear wave equations. Consequently, our results in this
paper should be of direct relevance to the investigation of physical models of nonlinear radial wave
propagation as well as to on-going analytical work on the Cauchy problem for radial quasilinear
wave equations.

There are two important cases in which the radial wave equations (7a) and (7b) have a special
analytical structure. First, a radial wave equation (6) has a n-dimensional divergence structure if its
derivative terms can be expressed as a total divergence of the form

(rn−1ut )t = (rn−1 F)r (8)



053703-3 Anco, MacNaughton, and Wolf J. Math. Phys. 53, 053703 (2012)

for some function F(u, ur). Such equations (8) give rise to kinematic conservation laws involving
the wave amplitude u and its time derivative ut, which will be discussed later. Second, a radial
wave equation (6) has a n-dimensional variational structure if it arises as the stationary points of a
functional

L =
∫ ∞

0
Lrn−1dr,

δL
δu

= rn−1(utt − gurr − f ) = 0 (9)

for some Lagrangian L(u, ut, ur). Wave equations with this structure (9) possess an energy conser-
vation law related to time-translation symmetry through Noether’s theorem,7, 14 as will be reviewed
in more detail later.

Wave equation (5a) is variational when (and only when) its coefficients a, b, c satisfy the relation
2a = pb, where the Lagrangian is given by

L = 1
2 (−u2

t + (c + bu p)u2
r ). (10a)

Wave equation (5b) is variational when (and only when) its coefficients a, b, c satisfy the relation a
= pb. The Lagrangian is given by

L = 1
2 (−u2

t + cu2
r ) + bh(ur ), (10b)

where

h =
∫

u p+1
r dur =

⎧⎪⎨
⎪⎩

1

p + 2
u p+2

r , p �= −2

ln ur , p = −2

. (11)

Both wave equations (5a) and (5b) are total divergences when (and only when) a = bp, with the
respective fluxes given by

F = (c + bu p)ur = (cu + bH (u))r (12a)

and

F = (c + bu p
r )ur, (12b)

where

H =
∫

u pdu =

⎧⎪⎨
⎪⎩

1

p + 1
u p+1, p �= −1

ln u, p = −1

. (13)

We note that the conditions for the existence of a divergence structure (8) and a variational structure
(9) coincide for wave equation (5b).

Interestingly, wave equation (5b) has an alternative divergence structure and variational structure
when c = 0 without any conditions on a and b. In this case,

utt = (a + b)u p
r urr + b

n − 1

r
u p+1

r (14)

is a total divergence of the form

(rmut )t = (rm F̃)r , F̃ =

⎧⎪⎨
⎪⎩

b + a

p + 1
u p+1

r , p �= −1

(b + a) ln ur + b(n − 1) ln r, p = −1

(15)

and also arises from a Lagrangian functional

L =
∫ ∞

0
L̃rmdr, L̃ = − 1

2 u2
t +

∫
F̃(r, ur )dur , (16)
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where

m = b(n − 1)(p + 1)

a + b
. (17)

Compatibility between variational structures, divergence structures, quasilinearity or semilin-
earity is summarized by the following result.

Proposition 1:
(i) A radial wave equation (5a) has a hyperbolic, quasilinear, variational form (9) iff 2a

= pb �= 0, or a hyperbolic, quasilinear, divergence form (8) iff a = pb �= 0. (In particular, these two
structures are mutually incompatible).

(ii) A radial wave equation (5b) has a hyperbolic, quasilinear, variational/divergence form (8)
and (9) iff a = pb, p(p + 1)b �= 0, or a hyperbolic, quasilinear, alternative variational/divergence
form (15) and (16) iff c = 0, p(a + b) �= 0. (Moreover, these structures coincide when c = 0,
a = pb, p(p + 1)b �= 0, so thus m = n − 1.)

(iii) A radial wave equation (5a) and (5b) cannot have a hyperbolic, semilinear, variational or
divergence form.

In this paper, for the two classes of radial wave equations (7a) and (7b), the main goals of our
work will be to determine:

(i) what symmetries are admitted other than time-translation;
(ii) what conservation laws are admitted other than energy in the variational case (9), and kinematic

quantities in the divergence case (8).

In Sec. II, we first recall the definitions of symmetries and conservation laws for the general
class of radial wave equations (6). For the case of a radial divergence structure (8) or (15), we discuss
the notion of kinematic conservation laws. For the case of a radial variational structure (9) or (16),
we give a statement of Noether’s theorem and summarize the energy conservation law arising from
time-translation symmetry.

In Secs. III and IV, we present the classifications of symmetries and conservation laws for
each class of radial wave equations (5a) and (5b). For special nonlinearity powers p and for special
relations among the coefficients a, b, c, both of these wave equations are found to possess a variety
of interesting symmetries, including scalings, non-rigid radial dilations, and a temporal inversion, as
shown in Sec. III. The commutator algebra for all of the symmetries is worked out in detail. Varia-
tional symmetries are also identified, which yield conservation laws through the variational structures
for each of the wave equations. As shown in Sec. IV, these Noether conservation laws include simi-
larity energies, conformal energies, and radial momenta. Interestingly, additional conservation laws
are found to exist for certain nonlinear powers p and for certain relations among the coefficients
a, b, c. These conservation laws describe generalized-energies that do not arise from Noether’s
theorem. We account for them by deriving a variational type of Morawetz radial dilation identity
that produces conservation laws from symmetries in a different manner than the usual Noether cor-
respondence. This main result is explained in Subsections IV A 2 and IV B 2 for the respective wave
equations (5a) and (5b).

Our classification results will be extended to the original two classes of translationally invariant
wave equations (4a) and (4b) in a subsequent paper.

II. PRELIMINARIES

To proceed, we state the definitions of symmetries and conservation laws from an analytical
perspective (see also Ref. 7). A point symmetry of a wave equation (6) is a group of transformations
given by an infinitesimal generator

δt = τ (t, r, u), δx = ξ (t, r, u), δu = η(t, r, u) (18)
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on the variables t, r, u, under which the wave equation (6) is preserved. On solutions u(t, r) of
equation (6), such an infinitesimal transformation (18) is equivalent to a generator

X = (η − τut − ξur )∂/∂u (19)

called the characteristic form of the point symmetry. The scalar functions η, τ , ξ are determined by
a linear equation arising from the Fréchet derivative of the wave equation (6) applied to the function
P = η − τut − ξur,

0 = D2
t P −

(∂ f

∂u
+ urr

∂g

∂u

)
P −

( ∂ f

∂ur
+ urr

∂g

∂ur

)
Dr P − gD2

r P (20)

holding for all formal solutions u(t, r), namely, with utt (and its r-derivatives) replaced by gurr

+ f (and its total r-derivatives). (More precisely, symmetries are computed in a jet space whose
coordinates are defined by t, r, u and all derivatives of u modulo the equation (6) and its differential
consequences. A point symmetry is then the prolongation of the operator (19) that annihilates the
wave equation (6).)

The definition of a symmetry can be extended to involve first-order derivatives of u by consid-
ering an infinitesimal generator of the form

X = P(t, r, u, ut , ur )∂/∂u, (21)

where P is a scalar function depending on ut, ur, in addition to t, r, u. Such a generator corresponds
to the infinitesimal transformations (Ref. 7)

δt = − ∂ P

∂ut
, δr = − ∂ P

∂ur
, (22a)

δu = P − ut
∂ P

∂ut
− ur

∂ P

∂ur
, (22b)

δut = ∂ P

∂t
+ ut

∂ P

∂u
, (22c)

δur = ∂ P

∂r
+ ur

∂ P

∂u
(22d)

on the variables r, t, u, ut, ur (viewed as coordinates in jet space). A group of transformations (22)
is a contact symmetry of a wave equation (6) if these transformations preserve the equation (6).

The set of all infinitesimal point or contact symmetries admitted by a given wave equation (6)
has the structure of a Lie algebra under commutation of the operators X (prolonged to the jet space).
For a given (sub)algebra of point or contact symmetries, the corresponding group of transformations
has a natural action14,6, 7 on the set of all solutions u(t, r) of the wave equation. A solution u(t, r) is
invariant under a one-dimensional (sub)group with a generator (21) if it satisfies the equation P(t, r,
u, ut, ur) = 0, where P = η − τut − ξur in the case of a point symmetry. Such solutions of a wave
equation (6) are called group invariant.

A conservation law of a wave equation (6) is a space-time divergence given by a linear combi-
nation of the equation and its differential consequences, so that

Dt T + Dr X = 0 (23)

holds for all formal solutions u(t, r), where T and X are scalar functions depending on t, r, u, ut, and
r-derivatives of u, ut. The radial integral of the conserved density T formally satisfies

d

dt

∫ ∞

0
T dr = −X

∣∣∞
0 (24)

and so if the radial flux X vanishes both at spatial infinity and at the origin, then

C =
∫ ∞

0
T dr = const. (25)
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formally yields a conserved quantity for the wave equation (6). Conversely, any such conserved
quantity arises from a conservation law (23). Two conservation laws are equivalent if their conserved
densities T differ by a total radial derivative Dr� on all formal solutions u(t, r), thereby giving the
same conserved quantity C up to boundary terms. Correspondingly, the fluxes X of two equivalent
conservation laws differ by a total time derivative − Dr� on all formal solutions u(t, r). The set
of all conservation laws (up to equivalence) admitted by a given wave equation (6) forms a vector
space, on which there is a natural action9 by the Lie group of all point or contact symmetries of
equation (6).

Each conservation law (23) has an equivalent characteristic form given by

Dt T + Dr (X − �) = (utt − gurr − f )Q (26)

with

� =
∑
l≥0

δT

δDl+1
r ut

Dl
r (utt − gurr − f ), (27)

where Q is a scalar function that depends on t, r, u, ut, and r-derivatives of u, ut. Such functions
Q whose product with equation (6) yields a total space-time divergence (and hence a conservation
law (23) on all solutions u(t, r)) are called multipliers. Through the characteristic equation (26),
multipliers and conserved densities (up to equivalence) have a one-to-one relation such that Q is the
variational derivative of T with respect to ut,

Q = δT

δut
, (28)

which can be inverted to express both T and X (modulo total derivative terms Dr� and − Dt�

respectively) in terms of Q by means of an explicit integral formula3, 4, 20 based on a homotopy
integration of the characteristic equation (26).

All multipliers Q for a wave equation (6) are determined by a linear system3, 4, 14, 20 that holds
for all formal solutions u(t, r). (More precisely, the computation of multipliers uses the same jet
space as for the computation of symmetries.) The system7 consists of a linear equation given by
the adjoint of the Fréchet derivative of equation (6) applied to Q, augmented by additional linear
equations formed from the Fréchet derivative of Q itself. Thus, the determination of conservation
laws via multipliers is a kind of adjoint problem2 of the determination of symmetries.

From the variational relation (28), conserved densities T up to 1st order correspond to multipliers
Q of at most the same order, as given by

Q(t, r, u, ut , ur ) = ∂T (t, r, u, ut , ur )

∂ut
. (29)

Such multipliers are determined by the linear system

0 = D2
t Q − (∂ f

∂u
+ urr

∂g

∂u

)
Q + Dr

(( ∂ f

∂ur
+ urr

∂g

∂ur

)
Q

)
− D2

r

(
gQ

)
(30)

0 = 2
∂ Q

∂u
+ Dt

∂ Q

∂ut
− Dr

∂ Q

∂ur
(31)

holding for all solutions u(t, r), namely, with utt (and its r-derivatives) replaced by gurr + f (and its
total r-derivatives). For a given multiplier Q, the corresponding conserved density T and flux X can
be obtained by integration of the relations

∂T

∂ut
= Q,

∂ X

∂ur
= −gQ, (32)

∂T

∂ur
+ ∂ X

∂ut
= 0,

∂T

∂t
+ ∂ X

∂r
+ ut

∂T

∂u
+ ur

∂ X

∂u
= − f Q, (33)
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arising from the characteristic equation (26). In particular, an explicit homotopy integration formula
is given by

T (t, r, u, ut , ur ) =ut

∫ 1

0

(
Q(t, r, λu, λut , λur ) − λu

∂ Q

∂u
(t, r, λu, λut , λur )

)
dλ

+ ur

∫ 1

0

(
W (t, r, λu, λut , λur ) + λu

∂W

∂u
(t, r, λu, λut , λur )

)
dλ

− u
∫ 1

0

(
f (r, λu, λur )

∂ Q

∂ut
(t, r, λu, λut , λur )

+ ∂ Q

∂t
(t, r, λu, λut , λur ) − ∂W

∂r
(t, r, λu, λut , λur )

)
dλ

(34)

and

X (t, r, u, ut , ur ) = − ut

∫ 1

0

(
W (t, r, λu, λut , λur ) + λu

∂W

∂u
(t, r, λu, λut , λur )

)
dλ

− ur

∫ 1

0

(
(Qg)(t, r, λu, λut , λur ) − λu

∂(Qg)

∂u
(t, r, λu, λut , λur )

)
dλ

+ u
∫ 1

0

(∂ Q

∂r
(t, r, λu, λut , λur )g(t, r, λu, λut , λur )

− ∂(Q f )

∂ur
(t, r, λu, λut , λur ) − ∂W

∂t
(t, r, λu, λut , λur )

)
dλ,

(35)

where

W (t, r, u, ur , ut ) = ut

∫ 1

0

∂ Q

∂ur
(t, r, u, λut , λur )dλ + ur

∫ 1

0
g(r, u, λur )

∂ Q

∂ut
(t, r, u, λut , λur )dλ.

(36)
These expressions (34)–(36) are an improvement over the standard homotopy integral formula in
which both T and X would contain r-derivatives of ut, ur that have been canceled here by the addition
of suitable total derivative terms. (The proof that T and X satisfy relations (32) and (33) assumes that
the scaled characteristic expression(

λutt − g(r, λu, λur )λurr − f (r, λu, λur )
)
Q(t, r, λu, λut , λur )

as well as the scaled differential form
∂ Q

∂ur
(t, r, u, λut , λur )λdut + g(r, u, λur )

∂ Q

∂ut
(t, r, u, λut , λur )λdur

are differentiable with respect to λ and vanish at λ = 0.)
If a wave equation (6) possesses a variational formulation (9), then its multipliers Q correspond

to variational symmetries defined by the characteristic form

X = r1−n Q∂/∂u, (37)

where the determining equations on Q can be shown to reduce to conditions equivalent to those
given by Noether’s theorem14,7, 8 for the Lagrangian functional L to be formally invariant (up to
boundary terms at spatial infinity and the origin) under the prolongation of the generator (37). More
precisely, symmetry invariance requires that the Lagrangian itself satisfies

rn−1prXL = Dt A + Dr B (38)

for some scalar functions A and B depending on t, r, u, ut, and r-derivatives of u, ut, where X is a
symmetry generator (21) in characteristic form (and pr denotes its prolongation). Then the variational
identity

rn−1prXL = δL
δu

P + Dt

(
rn−1 ∂L

∂ut
P

)
+ Dr

(
rn−1 ∂L

∂ur
P

)
(39)
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yields the equation

δL
δu

P = (utt − gurr − f )rn−1 P = Dt T + Dr X (40)

given by

T = A − Q
∂L

∂ut
, X = B − Q

∂L

∂ur
, Q = rn−1 P. (41)

Thus, each symmetry generator (21) for which the Lagrangian functional is invariant (38) yields a
conservation law in characteristic form (26) with the conserved density T and flux X given in terms
of A, B, P by the Noether relation (41). Conversely, through the variational identity (39) combined
with equation (40), each conservation law in characteristic form (26) yields a symmetry generator
(37) under which the Lagrangian functional is invariant (38), with A and B determined in terms of
Q, T, X from the Noether relation (41). Moreover, since invariance of the Lagrangian functional
L implies that its stationary points δL/δu = 0 are preserved, every variational symmetry (37) of a
Lagrangian for a wave equation (6) is thus a symmetry of the wave equation itself.

Note that when the multiplier Q given by a Noether conservation law (41) is of 1st order (29)
then the corresponding variational symmetry (37) will be of point type if

∂2 Q

∂ut∂ut
= ∂2 Q

∂ur∂ur
= ∂2 Q

∂ut∂ur
= 0 (42)

and otherwise it will be of contact type.
By inspection, any Lagrangian functional of the form (9) is formally invariant under infinitesimal

time-translation

δt = 1, δr = 0, δu = 0. (43)

The corresponding characteristic generator thereby yields a variational symmetry

X = r1−n Q∂/∂u, Q = −rn−1ut , (44)

admitted in the case of a variational wave equation (6). The resulting conservation law (41) describes
a conserved energy

C = −
∫ ∞

0
T dr =

∫ ∞

0
(u2

t + L(u, ut , ur ))rn−1 dr (45)

for all solutions u(t, r) that have zero flux at spatial infinity and at the origin.
In the case of a wave equation (14) having the alternative variational structure (16), the previous

statements hold with rm in place of rn − 1.
For any wave equation (6), whether or not it is variational, a conserved density T and a flux X

that arise from a multiplier with at most linear dependence on ut

Q = α(t, r, u, ur )ut + β(t, r, u, ur ) (46)

will be called a generalized-energy type conservation law. For such conservation laws, the relations
(32)–(33) show that the form of T and X is given by

T = 1
2 u2

t α(t, r, u, ur ) + utβ(t, r, u, ur ) + A(t, r, u, ur )

X = − 1
6 u3

t

∂α(t, r, u, ur )

∂ur
− 1

2 u2
t

∂β(t, r, u, ur )

∂ur
− ut

∂ A(t, r, u, ur )

∂ur
+ B(t, r, u, ur )

(47)

for some scalar functions A and B.
If a wave equation (6) possesses a divergence structure (8), then it can be integrated to get

d2

dt2

∫ ∞

0
urn−1 dr = F

∣∣∞
0 , (48)
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which formally yields a kinematic quantity given by

C(t) =
∫ ∞

0
urn−1 dr = C1t + C2 (49)

satisfying

d2C

dt2
= 0 (50)

provided that the flux F vanishes at spatial infinity and at the origin. The resulting quantities

C1 =
∫ ∞

0
utr

n−1 dr = const. (51)

C2 =
∫ ∞

0
(u − tut )r

n−1 dr = const. (52)

are conserved, corresponding to the conservation laws

T1 = rn−1ut , X1 = −rn−1 F (53)

T2 = rn−1(u − tut ), X2 = rn−1t F, (54)

whose multipliers are given by

Q1 = rn−1, Q2 = −rn−1t. (55)

In the case of a wave equation (14) having the alternative divergence structure (15), the same
kinematic conservation laws hold with rm in place of rn − 1.

More generally, for any wave equation (6), whether or not it has a divergence structure, a
conserved density T and a flux X arising from a multiplier Q that depends only on the coordinates t,
r will be called a kinematic type conservation law. Such conservation laws are characterized by the
form

T = utα(t, r ) − u
∂α(t, r )

∂t
(56)

for the conserved density, where

Q = α(t, r ) (57)

is the corresponding multiplier.

III. SYMMETRY CLASSIFICATION

For each class of radial wave equations (5a) and (5b), we will now find all point symmetries
(37). In particular, we will explicitly determine any point symmetries that exist only for special
nonlinearity powers p and dimensions n �= 1, as well as for special relations among the constant
coefficients a, b, c in these wave equations, excluding cases where the wave equation is linear or
non-hyperbolic. (Note we will allow n to have non-integer values. An interpretation of the wave
equations (5a) and (5b) in such cases is given in Sec. V.)

Our results are obtained by solving the determining equation (20) for the functions τ (t, r, u), ξ (t,
r, u), η(t, r, u) given by the characteristic form of the symmetry generator (19). To keep the list of
solutions succinct, we have merged symmetries with similar forms into a combined form wherever
possible. Remarks on the computation will be provided at the end in Sec. III C.

We will also work out the commutator structure of these symmetry generators. For this purpose,
it is convenient to use the associated canonical form of the generator defined by

X̂ = τ∂/∂t + ξ∂/∂r + η∂/∂u, (58)



053703-10 Anco, MacNaughton, and Wolf J. Math. Phys. 53, 053703 (2012)

TABLE I. Infinitesimal point symmetries for n �= 1, (bp)2 + a2(c + b)2 �= 0.

τ ξ η Conditions

1 1 0 0
2 t r 0
3 0 1

2 pbr bu + pc cp(p − 1) = 0, b �= 0

4 0 (a + b + (1 − p)c)r3 − n (2 − n)r2−n
(
(b + (1 − p)c)u + pc

) cp(p − 1) = 0,(
a + b + (1 − p)c

)
(n − 3)

= bp(n/2 − 1),
n �= 2

5 0 1
2 pbr ln r (1 + ln r)(bu + pc)

cp(p − 1) = 0,

a = (p − 1)c − b, b �= 0,

n = 2

6 t2 0 tu
c = 0,

p = −4

7 0 0 1
b = 0,

p = 1

8 0 0 t
b = 0,

p = 1

which directly corresponds to an infinitesimal transformation (18) on (t, r, u), namely δt = X̂t
= τ (t, r, u), δr = X̂r = ξ (t, r, u), δu = X̂u = η(t, r, u).

A. Point symmetries of utt = (c + bup)(urr + (n − 1)ur/r) + aup−1u2
r

Table I lists the infinitesimal point symmetries of the radial wave equation (5a) in all cases such
that this equation is nonlinear (i.e., a �= 0 or pb �= 0), hyperbolic (i.e., pb �= 0 or c + b �= 0 when
pb = 0), and multi-dimensional (i.e., n �= 1). These three restrictions are equivalent to the inequality
(n − 1)((bp)2 + a2(c + b)2) �= 0 holding on the nonlinearity power p, the dimension n, and the
coefficients a, b, c.

Symmetries X̂1 and X̂2 respectively generate a time-translation and a space-time dilation on (t,
r). These are the only symmetries admitted for all allowed values of a, b, c, p, n. Symmetries X̂7

and X̂8 generate a shift on u, while symmetry X̂6 generates a temporal inversion on (t, u). Symmetry
X̂3 generates a scaling on (r, u) when c = 0, or a scaling on u when p = 0, and otherwise generates
a shift on u combined with a scaling on (r, u) when c �= 0, p �= 0. Symmetry X̂4 is a non-rigid
generalization of the shift-scaling X̂3 on (r, u). Symmetry X̂5 is a logarithmic counterpart of X̂4.

From Table I we see that the point symmetry structure for the wave equation (5a) is richest in
four main cases: n = 2, i.e., when the spatial domain is planar; p = 1, i.e., when the nonlinearities are
quadratic; p = 0, i.e., when the Laplacian term is linear; and c = 0, i.e., when the linear Laplacian
term is absent. We also see that the only distinguished relation among a, b, c is given by (a + b
+ (1 − p)c)(n − 3) = bp(n/2 − 1), which reduces to a = (p − 1)c − b when n = 2, where p and
c are restricted by the condition p(p − 1)c = 0. When the radial wave equation (5a) is quasilinear
(i.e., p �= 0, b �= 0), this relation becomes

a = −
(

p
1 − n/2

n − 3
+ 1

)
b, n �= 3 (59)

with p = 1 or c = 0. In contrast, when the radial wave equation (5a) is semilinear (i.e., pb = 0,
a �= 0), the distinguished relation among a, b, c simplifies to

a = −(b + c) or n = 3. (60)

We note that, from Proposition 1, the simplified relation (59) in the quasilinear case coincides with
the condition 2a = pb for existence of a variational structure (9) if p = 2(n − 3) �= 0 or the condition
a = pb for existence of a divergence structure (8) if p = 2(n − 3)/(4 − n) �= 0, n �= 4, while
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the non-existence of both a variational structure and a divergence structure in the semilinear case
precludes any overlap with the relation (60).

We will next summarize the structure of the algebra generated by all of these point symmetries.

Theorem 1: For a multi-dimensional, hyperbolic, quasilinear radial wave equation (5a), its
point symmetries in the general case n �= 1, p �= 0, b �= 0 comprise a 2-dimensional algebra generated
by the time-translation X̂1 and the space-time dilation X̂2, with the commutator structure

[X̂1, X̂2] = X̂1. (61)

Its additional point symmetries generate larger algebras in the following cases:
(i) For c = 0, the point symmetries additionally comprise the scaling X̂3; the non-rigid dilation

X̂4 when a(n − 3) + b(n − 3 − p(n − 2)/2) = 0, n �= 2; the logarithmic dilation X̂5 when
a + b = 0, n = 2; and the temporal inversion X̂6 when p = − 4. In the subcases n = 3, p �= 0,
p �= − 4, or n �= 3, a �= − b(p(1 − n/2)/(n − 3) + 1), p �= − 4, the scaling X̂3 enlarges the
commutator structure (61) by

[X̂1, X̂3] = [X̂2, X̂3] = 0 (62)

generating a 3-dimensional algebra. In the subcases n �= 2, n �= 3, a = − b(p(1 − n/2)/(n − 3)
+ 1), p �= − 4, or n = 3, p = 0, the non-rigid dilation X̂4 enlarges the commutator structure
(61)–(62) by

[X̂1, X̂4] = 0, [X̂2, X̂4] = (2 − n)X̂4, [X̂3, X̂4] = p(1 − n/2)bX̂4. (63)

In the subcase n = 2, a = − b, p �= − 4, the logarithmic dilation X̂5 enlarges the commutator
structure (61)–(62) by

[X̂1, X̂5] = 0, [X̂2, X̂5] = X̂3, [X̂3, X̂5] = pb/2X̂3. (64)

In the subcase n �= 2, n �= 3, a �= − b(p(1 − n/2)/(n − 3) + 1), p = − 4, the temporal inversion
X̂6 enlarges the commutator structure (61)–(62) by

[X̂1, X̂6] = 2X̂2 + 1/bX̂3, [X̂2, X̂6] = X̂6, [X̂3, X̂6] = 0. (65)

In the three previous subcases, the algebra is 4-dimensional. A 5-dimensional algebra is generated
in the two remaining subcases. In the subcase n �= 2, n �= 3, a = − b((4 − 2n)/(n − 3) + 1),
p = − 4, the non-rigid dilation X̂4 and the temporal inversion X̂6 enlarge the commutator structure
(61)–(62) by

[X̂1, X̂4] = [X̂4, X̂6] = 0, [X̂2, X̂4] = (2 − n)X̂4, [X̂3, X̂4] = 2(n − 2)bX̂4. (66)

In the subcase n = 2, a = − b, p = − 4, the logarithmic dilation X̂5 and the temporal inversion X̂6

enlarge the commutator structure (61)–(62) by

[X̂1, X̂5] = [X̂5, X̂6] = 0, [X̂2, X̂5] = X̂3, [X̂3, X̂5] = −2bX̂3. (67)

(ii) For c �= 0, p = 1, the point symmetries additionally comprise the shift-scaling X̂3; the
non-rigid dilation X̂4 when a = − b((1 − n/2)/(n − 3) + 1), n �= 2, n �= 3; and the logarithmic
dilation X̂5 when a = − b, n = 2. In the subcase n �= 3, a �= − b((1 − n/2)/(n − 3) + 1), the
shift-scaling X̂3 enlarges the commutator structure to generate a 3-dimensional algebra (61)–(62).
A 4-dimensional algebra is generated in the two remaining subcases. In the subcase n �= 2, n �= 3,
a = − b((1 − n/2)/(n − 3) + 1), the non-rigid dilation X̂4 enlarges the commutator structure
(61)–(62) by

[X̂1, X̂4] = 0, [X̂2, X̂4] = (2 − n)X̂4, [X̂3, X̂4] = (1 − n/2)bX̂4. (68)

In the subcase n = 2, a = − b, the logarithmic dilation X̂5 enlarges the commutator structure
(61)–(62) by

[X̂1, X̂5] = 0, [X̂2, X̂5] = X̂3, [X̂3, X̂5] = b/2X̂3. (69)
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Variational point symmetries of a radial wave equation (5a) comprise a sub-algebra of the
algebra described in Theorem 1. The structure of this sub-algebra will be discussed in the context
of conservation laws in Sec. IV A.

Theorem 2: For a multi-dimensional, hyperbolic, semilinear radial wave equation (5a), its point
symmetries in the general case n �= 1, bp = 0, a �= 0, c + b �= 0 again comprise a 2-dimensional
algebra generated by the time-translation X̂1 and the space-time dilation X̂2, with the commutator
structure

[X̂1, X̂2] = X̂1. (70)

Its additional point symmetries generate larger algebras in following cases:
(i) For p = 0, b �= 0, the point symmetries additionally comprise the scaling X̂3; the non-rigid

dilation X̂4 when (a + b + c)(n − 3) = 0, n �= 2; and the logarithmic dilation X̂5 when a + b
+ c = 0, n = 2. In the subcase n �= 3, a �= − (b + c), the scaling X̂3 enlarges the commutator
structure (70) by

[X̂1, X̂3] = [X̂2, X̂3] = 0 (71)

generating a 3-dimensional algebra. In the subcases n = 3, or n �= 2, n �= 3, a = − (b + c), the
scaling X̂3 and the non-rigid dilation X̂4 enlarge the commutator structure (70) and (71) by

[X̂1, X̂4] = [X̂3, X̂4] = 0, [X̂2, X̂4] = (2 − n)X̂4 (72)

generating a 4-dimensional algebra. In the subcase n = 2, a = − (b + c), the scaling X̂3 and the
logarithmic dilation X̂5 enlarge the commutator structure (70) and (71) by

[X̂1, X̂5] = [X̂3, X̂5] = 0, [X̂2, X̂5] = X̂3 (73)

generating another 4-dimensional algebra.
(ii) For b = 0, c �= 0, the point symmetries additionally comprise the non-rigid dilation X̂4 when

(a + (1 − p)c)(n − 3) = 0, p(p − 1) = 0, n �= 2; and the shifts X̂7 and X̂8 when p = 1. In the
subcases p = 0, n = 3, or p = 0, n �= 3, a = − c, the non-rigid dilation X̂4 enlarges the commutator
structure (70) by

[X̂1, X̂4] = 0, [X̂2, X̂4] = (2 − n)X̂4 (74)

generating a 3-dimensional algebra. In the subcase p = 1, n �= 3, the shifts X̂7 and X̂8 enlarge the
commutator structure (70) by

[X̂1, X̂7] = [X̂2, X̂7] = 0, [X̂1, X̂8] = X̂7, [X̂2, X̂8] = X̂8 (75)

generating a 4-dimensional algebra. In the subcase p = 1, n = 3, the non-rigid dilation X̂4 and the
shifts X̂7 and X̂8 enlarge the commutator structure (70) and (75) by

[X̂1, X̂4] = [X̂4, X̂7] = [X̂4, X̂8] = 0, [X̂2, X̂4] = −X̂4 (76)

generating a 5-dimensional algebra.

Since semilinearity for a radial wave equation (5a) precludes the existence of a variational
formulation, the algebra described in Theorem 2 has no variational sub-algebra.

B. Point symmetries of utt = (c + (a + b)up
r )urr + (n − 1)(cur + bup+1

r )/r

Table II lists the infinitesimal point symmetries of the radial wave equation (5b) in all cases
such that this equation is nonlinear (i.e., pb �= 0 or p(a + b) �= 0), hyperbolic (i.e., p(b + a) �= 0
or c �= 0), and multi-dimensional (i.e., n �= 1, c �= 0 or (p + 1)b �= 0). These three restrictions are
equivalent to the inequality (n − 1)p(b2 + c2)((b + a)2 + b2c2(p + 1)2) �= 0 holding on the
nonlinearity power p, the dimension n, and the coefficients a, b, c.
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TABLE II. Infinitesimal point symmetries for (n − 1)(b2(p + 1)2 + c2) �= 0, p((b + a)2 + b2c2(p + 1)2) �= 0.

τ ξ η Conditions

1 1 0 0
2 t r u

3 0 0 1
4 0 0 t
5 pt 0 − 2u c = 0

6 t2 0 tu
c = 0,

p = −4

7 0 r− m 0
c = 0, a �= b(n − 2), b �= 0
p = −2

8 0 rln r 0
c = 0, a = b(n − 2), b �= 0,

p = −2

Symmetry X̂1 generates a time-translation. Symmetry X̂2 generates a scaling on (t, r, u).
Symmetries X̂3 and X̂4 generate a shift on u. These are the only symmetries admitted for all allowed
values of a, b, c, p, n. Symmetry X̂5 generates a scaling on (t, u), while symmetry X̂6 generates a
temporal inversion on (t, u). Symmetry X̂7 is a non-rigid generalization of the scaling on r given by
X̂2 + 1

2 X̂5 (i.e., τ = 0, ξ = r, η = 0) when c = 0. Symmetry X̂8 is a logarithmic counterpart of X̂7.
From Table II we see that the point symmetry structure for the wave equation (5b) is richest

in the case c = 0, i.e., when the linear Laplacian term is absent, and in the subcases p = − 2 and
p = − 4, i.e., when the nonlinearities take the form

utt = a + b

|p| (u−|p|
r )r + (n − 1)bu−|p+1|

r /r, p = −2, 4. (77)

We also see that there is no distinguished dimension n �= 1, while the only distinguished relation
among a, b, c is given by

a = b(n − 2), b �= 0. (78)

When the radial wave equation (5b) is quasilinear (i.e., p �= 0, b + a �= 0), this relation (78)
coincides with the condition a = pb for the existence of both a variational structure (9) and a
divergence structure (8) if p = n − 2 �= 0. Moreover, the relation (78) corresponds to

m = p + 1 (79)

in terms of the radial power

m = b(n − 1)(p + 1)

a + b
, (80)

which characterizes the alternative variational and divergence structures (16) and (15) that exist
for the radial wave equation (5b) in the highly quasilinear case c = 0 (p �= 0, b + a �= 0). In
contrast, when the radial wave equation (5b) is semilinear (i.e., p �= 0, b + a = 0, bc �= 0), the non-
existence of both a variational structure and a divergence structure precludes any overlap with the
relation (78).

We will next summarize the structure of the algebra generated by all of these point symmetries.

Theorem 3: For a multi-dimensional, hyperbolic, quasilinear radial wave equation (5b), its
point symmetries in the general case n �= 1, b �= 0, b + a �= 0, p(p + 1) �= 0 comprise a
4-dimensional algebra generated by the time-translation X̂1, the scaling X̂2, and the shifts X̂3 and
X̂4, with the commutator structure

[X̂1, X̂2] = X̂1, [X̂1, X̂3] = [X̂2, X̂4] = [X̂3, X̂4] = 0, [X̂2, X̂3] = −X̂3. (81)
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For c = 0, its point symmetries generate larger algebras that additionally comprise the temporal
scaling X̂5; the temporal inversion X̂6 when p = − 4; the non-rigid scaling X̂7 when a �= b(n − 2),
p = − 2; and the logarithmic scaling X̂8 when a = b(n − 2), p = − 2. In the subcase p �= − 2,
p �= − 4, the temporal scaling X̂5 enlarges the commutator structure (81) by

[X̂1, X̂5] = pX̂1, [X̂2, X̂5] = 0, [X̂3, X̂5] = −2X̂3, [X̂4, X̂5] = −(2 + p)X̂4 (82)

generating a 5-dimensional algebra. In the subcase b �= 0, p = − 4, the temporal inversion X̂6

enlarges the commutator structure (81) and (82) by

[X̂1, X̂6] = − 1
2 X̂5, [X̂2, X̂6] = X̂6, [X̂3, X̂6] = X̂4, [X̂4, X̂6] = 0, [X̂5, X̂6] = −4X̂6. (83)

In the subcase a �= b(n − 2), p = − 2, the non-rigid scaling X̂7 enlarges the commutator structure
(81) and (82) by

[X̂1, X̂7] = [X̂3, X̂7] = [X̂4, X̂7] = [X̂5, X̂7] = 0, [X̂2, X̂7] = −(m + 1)X̂7. (84)

In the subcase a = b(n − 2), p = − 2, the logarithmic scaling X̂8 enlarges the commutator structure
(81) and (82) by

[X̂1, X̂8] = [X̂3, X̂8] = [X̂4, X̂8] = [X̂5, X̂8] = 0, [X̂2, X̂8] = X̂2 + 1
2 X̂5. (85)

In the previous three subcases, the algebra is 6-dimensional.

Variational point symmetries of a radial wave equation (5b) comprise a sub-algebra of the
algebra described in Theorem 3. The structure of this sub-algebra will be discussed in the context
of conservation laws in Sec. IV B.

Theorem 4: For a multi-dimensional, hyperbolic, semilinear radial wave equation (5b), its point
symmetries in all cases n �= 1, b + a = 0, b �= 0, c �= 0, p(p + 1) �= 0 comprise a 4-dimensional
algebra generated by the time-translation X̂1, the scaling X̂2, and the shifts X̂3 and X̂4, with the
commutator structure

[X̂1, X̂2] = X̂1, [X̂1, X̂3] = [X̂2, X̂4] = [X̂3, X̂4] = 0, [X̂1, X̂3] = X̂3, [X̂2, X̂3] = −X̂3. (86)

Since the existence of a variational formulation is precluded by semilinearity for a radial wave
equation (5b), the algebra described in Theorem 4 has no variational sub-algebra.

C. Computational Remarks

In the computation of point symmetries (19) for a radial wave equation (5), the symmetry
determining equation (20) is formulated in the jet space whose coordinates are defined by t, r, u, ut,
ur, utr, and urr, where utt is replaced by gurr + f. For wave equation (5a), this determining equation
splits with respect to ut, ur, utr, urr into an overdetermined system of 16 equations in 8 unknowns
η(t, r, u), ξ (t, r, u), τ (t, r, u), a, b, c, n, and p. In contrast, for wave equation (5b), the determining
equation splits initially with respect to ut, utr, and urr, but not with respect to ur because this wave
equation contains terms involving the unknown power p of ur. In this case, the partial splitting yields
an overdetermined system of 9 equations in the 8 unknowns η(t, r, u), ξ (t, r, u), τ (t, r, u), a, b, c, n,
and p.

We use computer algebra both to carry out the splitting and to solve the resulting overdetermined
system of equations. The formulation and splitting of the symmetry determining equation is done
automatically by the program LIEPDE,17 which in turn calls the package CRACK19 to solve the resulting
overdetermined system for the 8 unknowns. Although the system is linear in the unknowns η, τ ,
and ξ , it is nonlinear jointly in the 8 unknowns and even is non-polynomial in the unknown power
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p, which appears as an exponent. Such problems are typically much more complicated to solve than
are linear problems.

One main difficulty is the handling of unknowns as exponents, which requires case splittings
such that all possible balances of exponents are considered. An example is the equation ξt − (a
+ b)u p

r τr − cτr − (a + b)u p+1
r τu − curτu = 0 together with the inequality p �= 0 arising during the

computation for solving the overdetermined system in the case of wave equation (5b). Balancing
the powers 0, 1, p, p + 1 of ur leads to three different splittings: p = − 1; p = 1; (p − 1)(p + 1)
�= 0. Each of these three cases then must be solved separately in the remaining computation. A similar
situation arises during the computation for solving the overdetermined system for wave equation
(5a), which involves splitting with respect to powers of u after integrating out the u dependence of
τ , ξ , η.

Other kinds of case splittings also arise. For example, when an expression factorizes then each
factor must be considered zero or non-zero, as in the equation c(ξ r − τ t) = 0 arising during the
computation for solving the overdetermined system for wave equation (5b). This leads to the cases
c = 0 and c �= 0, ξ r = τ t, both of which must then be solved separately.

To our knowledge, CRACK is the only package that can handle such computational difficulties
and, in particular, can both generate and solve all resulting cases automatically. In handling nested
case distinctions, CRACK considers equations and inequalities together. For example, equations and
inequalities are simplified with each other, and new inequalities as well as equations are generated
through case distinctions.

For both wave equations (5a) and (5b), CRACK is able to complete the entire computation of
point symmetries automatically.

IV. CONSERVATION LAW CLASSIFICATION

For each class of radial wave equations (5a) and (5b), we will now find all kinematic conser-
vation laws (56)–(57) and all generalized-energy conservation laws (46)–(47). In particular, we will
explicitly determine any such conservation laws that exist only for special nonlinearity powers p and
dimensions n �= 1, as well as for special relations among the constant coefficients a, b, c in these
wave equations, excluding cases where the wave equation is linear or non-hyperbolic. (Note we will
allow n to have non-integer values. An interpretation of the wave equations (5a) and (5b) in such
cases is given in Sec. V.)

Our results are obtained by first solving the determining system (30)–(31) for the multiplier
function

Q = α(t, r, u, ur )ut + β(t, r, u, ur ) (87)

given by the characteristic form (26) of these conservation laws, and then using the homotopy
integration formula (34)–(36) or directly integrating relations (32)–(33) to obtain the conserved
density T(t, r, u, ut, ur) and flux X(t, r, u, ut, ur) determined by each multiplier. To keep the list
of solutions succinct, we have merged conservation laws with similar forms into a combined form
wherever possible. Remarks on the computation will be provided at the end in Sec. IV C.

In the case when a radial wave equation (5a) or (5b) possesses a variational formulation (9),
multipliers (87) correspond (via Noether’s theorem (39)–(40)) to symmetries with the characteristic
form

X = r1−n(α(t, r, u, ur )ut + β(t, r, u, ur ))∂/∂u. (88)

Thus, our classification of all generalized-energy conservation laws will provide a partial classifi-
cation of variational symmetries for these wave equations. We note that a symmetry generator (88)
will be of point type (19) if and only if

∂α

∂ur
= ∂2β

∂ur∂ur
= 0 (89)
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TABLE III. Kinematic conservation laws for n �= 1, (bp)2 + a2(c + b)2 �= 0.

Q T X Conditions

1 rn − 1 rn − 1ut − rn − 1(c + bu p)ur a = pb
2 rn − 1t rn − 1(tut − u) − rn − 1t(c + bu p)ur a = pb

3 r rut − r(c + bu p)ur − (n − 2)(cu + bH(u))
a = pb,

n �= 2

4 rt r(tut − u) − t(r(c + bu p)ur + (n − 2)(cu + bH(u)))
a = pb,

n �= 2

5 rln r (rln r)ut cu + bH(u) − r(ln r)(c + bu p)ur
a = pb,

n = 2

6 (rln r)t (rln r)(tut − u) t(cu + bH(u) − r(ln r)(c + bu p)ur)
a = pb,

n = 2

in which case, it will have the equivalent canonical form

X̂ = −r1−n
(
α∂/∂t + ∂β

∂ur
∂/∂r + ( ∂β

∂ur
ur − β

)
∂/∂u

)
. (90)

In the case of the alternative variational structure (16)–(17), the same statements hold with r1 − n

replaced by r− m.

A. Conservation laws of utt = (c + bup)(urr + (n − 1)ur/r) + aup−1u2
r

In the following tables, we list the kinematic conservation laws (56)–(57) and generalized-
energy conservation laws (46)–(47) of the radial wave equation (5a) in all cases such that this
equation is nonlinear (i.e., a �= 0 or pb �= 0), hyperbolic (i.e., pb �= 0 or c + b �= 0 when pb = 0),
and multi-dimensional (i.e., n �= 1). These three restrictions are equivalent to the inequality (n
− 1)((bp)2 + a2(c + b)2) �= 0 holding on the nonlinearity power p, the dimension n, and the
coefficients a, b, c.

To begin, the kinematic conserved densities, fluxes, and corresponding multipliers are listed in
Table III, where H(u) denotes the expression (13) appearing in the divergence structure (12a).

Conserved densities T1 and T2 arise from the n-dimensional divergence structure (8) for the
radial wave equation (5a). Conserved densities T3 and T4 arise from an alternative divergence
structure (rut)t = (rF)r, where the flux is given by F = (c + bu p)ur + (n − 2)(cu + bH(u)), which
holds under the same existence condition a = pb as for the divergence structure (8). A logarithmic
counterpart of the alternative divergence structure gives rise to the conserved densities T5 and T6.

We will now summarize the structure of the vector space spanned by the conserved quantities
(25) arising from these kinematic conserved densities.

Theorem 5: A multi-dimensional, hyperbolic, nonlinear radial wave equation (5a) admits
kinematic conservation laws only in cases when a = pb �= 0.

(i) For n �= 2, a = pb �= 0, a basis of kinematic conserved quantities is comprised by

C1 =
∫ ∞

0
utr

n−1dr, C2 =
∫ ∞

0
(tut − u)rn−1dr, C3 =

∫ ∞

0
utrdr, C4 =

∫ ∞

0
(tut − u)rdr.

(91)

(ii) For n = 2, a = pb �= 0, a basis of kinematics conserved quantities is comprised by

C1 =
∫ ∞

0
utrdr, C2=

∫ ∞

0
(tut−u)rdr, C5=

∫ ∞

0
ut (ln r )rdr, C6=

∫ ∞

0
(tut−u)(ln r )rdr.

(92)

In both cases, the conserved quantities span a 4-dimensional vector space.
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TABLE IV. Generalized-energy conservation laws for n �= 1, (bp)2 + a2(c + b)2 �= 0.

T X Conditions

1 1
2 rn−1(u2

t + (c + bu p)u2
r ) − rn − 1(c + bu p)urut 2a = bp

2

1
2 rn−1

(
b(np + 4)t(u2

t + (c + bu p)u2
r )

+2b(p + 4)rur ut

+4(n − 1)(c + bu)ut
)

− 1
2 rn−1

(
b(p + 4)r ((c + bu)u2

r + u2
t )

+2(c + bu p)(b(np + 4)tut

+2(n − 1)(c + bu))ur
) 2a = bp, c(p − 1) = 0

3 r(brur + bu + c)ut

− 1
2

(
(c + bu p)(rur + u)(brur + bu + 2c)

+br2u2
t + c2u

) 2a = bp, c(p − 1) = 0,

p = 2(n − 3)

4 1
2 rn−1

(
t2(u2

t + bu−4u2
r ) − 2tuut + u2

) − rn − 1btu − 4ur(tut − u)
2a = bp, c = 0,

p = −4

5 1
2 r t(u2

t + bu−2u2
r ) + (r ln r )(rur + u)ut

− 1
2

(
(r ln r )(r (u2

t + bu−2u2
r ) + 2bu−1ur )

+2b(r tu−2ut ur − ln u)
) 2a = bp, c = 0,

p = −2, n = 2

6
1
2 rn−1

(
(3brur + n(bu + c))u2

t

+(bu p + c)(brur + n(bu + c))u2
r

) − 1
2 rn−1ut

(
2n(c + bu)(c + bu p)ur

+r (3b(c + bu p)u2
r + bu2

t )
) 3a = bp, c(p − 1) = 0,

p = 6(1 − 3/n)

7
1
2 r4/5

(
(5rur + 3u)(tu2

t − 2uut )

+3btu−4(5ur + 9u)u2
r

) − 1
2 r4/5

(
ur (5brur + 6bu)(tut − u)u−4

+ 5
3 ru2

t (tut − 3u)
) 3a = bp, c = 0,

p = −4, n = 9/5

The conditions on the coefficients a, b, c coming from Theorem 5 combined with Proposition
1 imply the following interesting result.

Corollary 1: A multi-dimensional, hyperbolic, nonlinear radial wave equation (5a) possesses
kinematic conservation laws iff it has a quasilinear divergence structure.

Next, the generalized-energy conserved densities and fluxes are listed in Table IV; corresponding
multipliers are listed in Table V.

From Table IV we see that these conservation laws are characterized by two distinguished
relations among the coefficients a, b, c: 2a = pb, or 3a = pb. The first relation 2a = pb is sim-
ply the condition for the existence of a variational structure (9) for the radial wave equation (5a).

TABLE V. Generalized-energy multipliers for n �= 1, (bp)2 + a2(c + b)2 �= 0.

Q Conditions

1 rn − 1ut 2a = bp

2
rn−1

(
b(np + 4)tut + b(p + 4)rur

+2(n − 1)(c + bu)
) 2a = bp, c(p − 1) = 0

3 r(brur + bu + c)
2a = bp, c(p − 1) = 0,

p = 2(n − 3)

4 rn − 1t(tut − u)
2a = bp, c = 0,

p = −4

5 rtut + (rln r)(rur + u)
2a = bp, c = 0,

p = −2, n = 2

6 rn − 1ut(3brur + n(bu + c))
3a = bp, c(p − 1) = 0,

p = 6(1 − 3/n)

7 r4/5(tut − u)(5rur + 3u)
3a = bp, c = 0,

p = −4, n = 9/5
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TABLE VI. Generalized-energy conserved quantities and variational symmetries for n �= 1, 2a = pb �= 0.

X̂ C Conditions

1 − ∂/∂t
∫ ∞

0

1
2 (u2

t + (c + bu p)u2
r )rn−1 dr

2
−b(np + 4)t∂/∂t − b(p + 4)r∂/∂r

+2(n − 1)(c + bu)∂/∂u

∫ ∞

0

1
2

(
b(np + 4)t(u2

t + (c + bu p)u2
r )

+2b(p + 4)rur ut

+4(n − 1)(c + bu)ut
)
rn−1 dr

c(p − 1) = 0

3 − br3 − n∂/∂r + r2 − n(bu + c)∂/∂u
∫ ∞

0
(brur + bu + c)utr dr

c(p − 1) = 0,

p = 2(n − 3)

4 − t2∂/∂t − tu∂/∂u

∫ ∞

0

1
2

(
t2(u2

t + bu−4u2
r )

−2tuut + u2
)
rn−1 dr

c = 0,

p = −4

5 − t∂/∂t + rln r∂/∂r + (ln r)u∂/∂u

∫ ∞

0

( 1
2 t( u2

t + bu−2u2
r )

+(ln r )(rur + u)ut
)
r dr

c = 0,

p = −2, n = 2

Conservation laws in this case correspond to variational symmetries through Noether’s theorem,
as we will summarize in Subsection IV A 1. The second relation 3a = pb turns out to be the
condition needed for deriving a variational type of Morawetz radial dilation identity, which pro-
duces conservation laws from temporal symmetries. We will discuss this interesting case later in
Subsection IV A 2.

1. Noether correspondence for utt = (c + bup)(urr + (n − 1)ur/r) + (bp/2)up−1u2
r

In the variational case 2a = pb, multipliers Q for conservation laws of the radial wave
equation (5a) are in one-to-one correspondence to variational symmetries X = r1 − nQ∂/∂u of

the Lagrangian (10a). We see from Table V that all of the generalized-energy multipliers for
2a = pb are linear in ut and ur. Consequently, the corresponding variational symmetries are all
of point type. This correspondence is summarized in Table VI, where C denotes the conserved
quantity (25) given by the conservation laws, and X̂ denotes the variational symmetry generator in
canonical form (58).

Conserved quantity C1 is an energy arising from the time-translation symmetry X̂1. Conserved
quantity C2 is a similarity energy arising from the scaling symmetry X̂2, while conserved quantity
C5 is a logarithmic counterpart of C2. Conserved quantity C3 is a radial momentum arising from the
non-rigid radial dilation symmetry X̂3. Conserved quantity C4 is a conformal energy arising from
the temporal inversion symmetry X̂4.

We will now state the vector space structure spanned by these conserved quantities as well as
the algebra structure determined by the corresponding variational symmetries.

Theorem 6: For a multi-dimensional, hyperbolic, nonlinear radial wave equation (5a) that has
a variational structure (9) when 2a = pb �= 0, variational point symmetries are admitted in two
cases, corresponding to all generalized-energy conservation laws.

(i) For c = 0, the variational point symmetries comprise the time-translation X̂1; the scaling
X̂2; the non-rigid radial dilations X̂3 when p = 2(n − 3) and X̂5 when p = − 2, n = 2; and the
temporal inversion X̂4 when p = − 4. In the subcase p �= 2(n − 3), p �= − 4, the time-translation
X̂1 and the scaling X̂2 generate a two-dimensional algebra with the commutator structure

[X̂1, X̂2] = −b(np + 4)X̂1. (93)

The corresponding two-dimensional vector space of conserved quantities is spanned by the energy
C1 and the similarity energy C2. In the subcase p = 2(n − 3), p �= − 4, n �= 2, the non-rigid radial
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dilation X̂3 enlarges the commutator structure (93) by

[X̂1, X̂3] = 0, [X̂2, X̂3] = 2b(n − 1)(n − 2)X̂3 (94)

generating a three-dimensional algebra, while the corresponding vector space of conserved quan-
tities is spanned by C1, C2, and the radial momentum C3. In the subcase p = − 4, the temporal
inversion X̂4 enlarges the commutator structure (93) by

[X̂1, X̂4] = −1/(4b(n − 1))X̂2, [X̂2, X̂4] = 4b(n − 1)X̂4 (95)

generating another three-dimensional algebra, while the corresponding vector space of conserved
quantities is spanned by C1, C2, and the conformal energy C4. In the subcase p = − 2, n = 2, the
non-rigid radial dilations X̂3 and X̂5 enlarge the commutator structure (93)–(94) by

[X̂1, X̂5] = −X̂1, [X̂2, X̂5] = 2X̂3, [X̂3, X̂5] = X̂3 (96)

generating a four-dimensional algebra whose corresponding vector space of conserved quantities
is spanned by C1, C2, C3, and the dilational energy C5.

(ii) For c �= 0, p = 1, the variational point symmetries comprise the time-translation X̂1;
the scaling X̂2; and the non-rigid radial dilation X̂3 when n = 7/2. In the subcase n �= 7/2, the
time-translation X̂1 and the scaling X̂2 generate a two-dimensional algebra with the commutator
structure (93), while the corresponding vector space of conserved quantities is spanned by the energy
C1 and the similarity energy C2. In the subcase n = 7/2, the non-rigid radial dilation X̂3 enlarges
the commutator structure (93) by

[X̂1, X̂3] = 0, [X̂2, X̂3] = 15/2bX̂3 (97)

generating a three-dimensional algebra, while the corresponding vector space of conserved quan-
tities is spanned by C1, C2, and the radial momentum C3.

2. Morawetz-type variational identity for utt = (c + bup)(urr + (n − 1)ur/r) + (bp/3)up−1u2
r

To derive a variational identity for the radial wave equation (5a) when 2a �= pb, we start by
making use of the previous Lagrangian (10a) to write

rn−1(utt − (c + bu p)(urr + (n − 1)ur/r ) − au p−1u2
r ) = Eu(rn−1L) + μrn−1 ∂L

∂u
, (98)

where

μ = 1 − 2a

pb
�= 0 (99)

is the coefficient of the non-variational terms, and where

Eu = ∂/∂u − Dr∂/∂ur − Dt∂/∂ut (100)

is the 1st order Euler-Lagrange operator (i.e., local variational derivative) with respect to u. We
next multiply equation (98) by the expression W = rur − λu, which represents the characteristic
function given by the generator of a scaling transformation on (r, u), namely δt = 0, δr = r,
δu = λu, for some constant λ. This yields

rn−1(rur − λu)
(
utt − (c + bu p)(urr + (n − 1)ur/r ) − au p−1u2

r

)
= (rur − λu)Eu(rn−1L) + μrn−1(rur − λu)

∂L

∂u
. (101)

Now we will show that the Euler-Lagrange term in this equation can be expressed in a useful way
as the sum of a total variational derivative Eu(rn−1 L̃) for some new Lagrangian L̃(u, ur , ut ) and a
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dilational derivative (r Dr + λ̃)(rn−1 f ) for some function f(u, ut) and some constant λ̃. Our main
tool is the operator identity

W Eu = prY − Dt (W∂/∂ut ) − Dr (W∂/∂ur ), (102)

where prY is the prolongation of the generator Y = W∂/∂u.
To proceed, we split up the Lagrangian L = L0 + L1 into its temporal and radial parts

L0 = − 1
2 u2

t , L1 = 1
2 (c + bu p)u2

r , (103)

which have the scaling properties

prYL0 = r Dr L0 − 2λL0 (104)

and

prYL1 = r Dr L1 − 2(λ − 1)L1 − λu
∂L1

∂u
(105)

for W = rur − λu. Applying the identity (102) to the part of the Euler-Lagrange term containing
L0 in equation (101), and using the scaling property (104), we get

(rur − λu)Eu(rn−1L0) = Dt
(
rn−1(rur − λu)ut

) + rn−1(r Dr − 2λ)L0. (106)

If we now define L̃0 by

∂ L̃0

∂ut
= (rur − λu)ut (107)

then the time derivative term in equation (106) can be expressed as

Dt
(
rn−1(rur − λu)ut

) = −Eu(rn−1 L̃0) + rn−1(r Dr + (λ + n))L0, (108)

where

L̃0 = 1
2 (rur − λu)u2

t . (109)

Hence, equation (106) becomes

(rur − λu)Eu(rn−1L0) = −Eu(rn−1 L̃0) + rn−1(2r Dr + (n − λ))L0. (110)

Similarly, from the scaling property (105) combined with the identity (102) applied to the part of
the Euler-Lagrange term containing L1 in equation (101), we obtain

(rur − λu)Eu(rn−1L1) = −Dr
(
rn−1(rur−λu)(c+bu p)ur

)+rn−1
(
(r Dr−2(λ − 1))L1−λu

∂L1

∂u

)
.

(111)

If we integrate by parts on the dilational derivative term in equation (111) and then define L̃1 by

∂ L̃1

∂ur
= − 1

2 (rur − 2λu)(c + bu p)ur , (112)

we find that the radial derivative terms in equation (111) can be expressed as

− Dr
(
rn−1(rur−λu)(c + bu p)ur

)+rn Dr L1= − Eu(rn−1 L̃1)+rn−1((λ(p+1)−n)L1− 1
3rur

∂L1

∂u

)
,

(113)

where

L̃1 = − 1
6 (rur − 3λu)(c + bu p)u2

r . (114)

Hence, equation (111) becomes

(rur − λu)Eu(rn−1L1) = −Eu(rn−1 L̃1) + rn−1
(
(λ(p − 1) + 2 − n)L1 − ( 1

3rur + λu)
∂L1

∂u

)
.

(115)
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Finally, substituting expressions (110) and (115) into equation (101), we have

rn−1(rur − λu)
(
utt − (c + bu p)(urr + (n − 1)ur/r ) − au p−1u2

r

)
= −Eu(rn−1(L̃0 + L̃1)) + rn−1(2r Dr + (n − λ))L0

+ rn−1
(
(λ(p − 1) + 2 − n)L1 + ((μ − 1

3 )rur − (1 + μ)λu)
∂L1

∂u

)
. (116)

We now require that the terms L1, ur∂L1/∂u, u∂L1/∂u vanish, which holds if and only if the
coefficients of u p−1u3

r , u2
r , u pu2

r in this equation are equal to zero. This imposes the respective
conditions

μ = 1/3, cλ = 0, (1 + p/3)λ = 2 − n. (117)

From the expression (99) for μ in terms of a, b, we then obtain

3a = pb. (118)

Thus, for 3a = pb, we see that equation (101) reduces to the variational dilation identity

rn−1(rur − λu)
(
utt − (c + bu p)(urr + (n − 1)ur/r ) − (pb/3)u p−1u2

r

)
= −Eu(rn−1 L̃) − (r Dr + λ̃)(rn−1u2

t ) (119)

with

L̃ = L̃0 + L̃1 = 1
2 (rur − λu)u2

t − 1
6 (rur − 3λu)(c + bu p)u2

r (120)

and

λ̃ = 1 − (n + λ)/2. (121)

As we will now illustrate, this identity (119) is able to produce conservation laws from multipliers
that are given by certain symmetries X = P∂/∂u in characteristic form, in a manner similar to
Noether’s theorem (39)–(40).

Consider the time translation

X = ut∂/∂u. (122)

When the identity (119) is multiplied by

P = ut (123)

we see first that the Euler-Lagrange term yields a total time derivative

−ut Eu(rn−1 L̃) = Dt
(
rn−1ut

∂ L̃

∂u

) − rn−1prXL̃ = Dt
(
rn−1ut

∂ L̃

∂u
− rn−1 L̃

)
(124)

since, by inspection, the Lagrangian functional L̃ = ∫ ∞
0 L̃rn−1dr is invariant under time-translation.

Second, we see that the dilational derivative term produces

−ut (r Dr+λ̃)(rn−1u2
t ) = −2rnu2

t utr−(λ̃+n−1)rn−1u3
t =Dr

( − 2
3rnu3

t

) + (1− 1
3 n−λ̃)rn−1u3

t ,

(125)
which will reduce to a total radial derivative iff

λ̃ = 1 − n/3. (126)

Equating expressions (126) and (121), and using conditions (117), we obtain the additional conditions

c = 0, p = 6(1 − 3/n) (127)

as well as

λ = −n/3. (128)
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TABLE VII. Generalized-energy conserved quantities and generators for n �= 1, 3a = bp �= 0.

Ŷ X̂ C Conditions

6
n(bu + c)∂/∂u

−3br∂/∂r
− ∂/∂t

∫ ∞

0

1
2

(
(3brur + n(bu + c))u2

t

+(bu p + c)(brur + n(bu + c))u2
r

)
rn−1 dr

c(p − 1) = 0,

p = 6(1 − 3/n)

7 3u∂/∂u − 5r∂/∂r − u∂/∂u − t∂/∂t

∫ ∞

0

1
2

(
ur (5brur + 6bu)(u − tut )u−4

+ 5
3 ru2

t (3u − tut )
)
r4/5 dr

c = 0,

p = −4, n = 9/5

Thus, for a, b, c, p, λ satisfying conditions (118), (126), and (127), the product of the variational
dilation identity (119) and the symmetry characteristic function (123) yields a conservation law,
where the conserved density and flux are given by T6 and X6 in Table IV while the multiplier is
given by Q6 in Table V. We note that the form of this multiplier consists of rn − 1 times the product
of the characteristic functions W = rur − λu and P = ut representing the scaling transformation
and the time-translation symmetry, respectively. The c �= 0 case for this conservation law shown in
Tables IV and V can be obtained from a similar variational identity in which the scaling transfor-
mation is generalized to a shift-scaling transformation given by a characteristic function of the form
W = rur − λ(u + ν), for some constants λ �= 0 and ν �= 0. In addition, the remaining conservation
law given by the conserved density T7 and flux X7 in Table IV, with the multiplier given by Q7 in
Table V, can be obtained from the variational identity (119) by using the temporal scaling symmetry
with the characteristic function P = tut − u in place of the time-translation symmetry. These results
are summarized in Table VII, where C denotes the conserved quantity (25) given by the conservation
laws, and where Ŷ and X̂, respectively, denote the scaling generator and symmetry generator in
canonical form (58).

We will now state the vector space structure spanned by these conserved quantities.

Theorem 7: For a multi-dimensional, hyperbolic, nonlinear radial wave equation (5a) that has
no variational structure (9), generalized-energy conservation laws are admitted only in cases when
3a = pb �= 0, arising from a variational type of radial dilation identity.

(i) For c = 0, 3a = pb �= 0, the conserved quantities are comprised by the generalized-dilation
energy C6 when p = 6(1 − 3/n) and the generalized-dilation conformal energy C7 when p = − 4,
n = 9/5. In the subcase p = 6(1 − 3/n), n �= 9/5, a basis for the conserved quantities consists of C6,
spanning a 1-dimensional vector space. In the subcase p = − 4, n = 9/5, the basis consists of C6,
C7, spanning a 2-dimensional vector space.

(ii) For c �= 0, 3a = pb �= 0, p = 1, the conserved quantities comprise only the generalized-
dilation energy C6 when n = 18/5, spanning a 1-dimensional vector space.

B. Conservation laws of utt = (c + (a + b)up
r )urr + (n − 1)(cur + bup+1

r )/r

In the following tables, we list the kinematic conservation laws (56)–(57) and generalized-energy
conservation laws (46)–(47) of the radial wave equation (5b) in all cases such that this equation is
nonlinear (i.e., p(p + 1)b �= 0 or p(a + b) �= 0), hyperbolic (i.e., p(b + a) �= 0 or c �= 0), and
multi-dimensional (i.e., n �= 1, c �= 0 or (p + 1)b �= 0). These three restrictions are equivalent to the
inequality (n − 1)p(b2 + c2)((b + a)2 + b2c2(p + 1)2) �= 0 holding on the nonlinearity power
p, the dimension n, and the coefficients a, b, c. Wherever it is convenient, we will use the notation

k = a + b (129)

and

m = b(n − 1)(p + 1)/(a + b). (130)

To begin, the kinematic conserved densities, fluxes, and corresponding multipliers are listed in
Table VIII.
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TABLE VIII. Kinematic conservation laws for (n − 1)(b2(p + 1)2 + c2) �= 0, p(k2 + b2c2(p + 1)2) �= 0.

Q T X Conditions

1 rm rmut −rm
(

cur + b(n − 1)

m
u p+1

r

)
c(k − (p + 1)b) = 0

2 rmt rm(tut − u) −rmt
(

cur + b(n − 1)

m
u p+1

r

)
c(k − (p + 1)b) = 0

3 r rut −b(n − 1)ru p+1
r − c(rur + (n − 2)u)

k = (p + 1)(n − 1)b, c �= 0
n �= 2

4 rt r(tut − u) −t(b(n − 1)ru p+1
r + c(rur + (n − 2)u))

k = (p + 1)(n − 1)b, c �= 0

n �= 2

These conservation laws are characterized by three distinguished relations among b, c, k:
k = (p + 1)b (i.e., a = pb), or c = 0, or k = (p + 1)(n − 1)b (i.e., a = (p(n − 1) + n − 2)b),
c �= 0. When k = (p + 1)b, the radial power (130) reduces to m = n − 1, thus in this case,
the conserved densities T1 and T2 arise from the n-dimensional divergence structure (8) for the
radial wave equation (5b) with c �= 0. When c = 0, the conserved densities T1 and T2 arise
from the alternative divergence structure (15) for this wave equation (5b) with an arbitrary radial
power (130). In contrast, when c �= 0 and k = (p + 1)(n − 1)b, the conserved densities T3

and T4 arise from a different divergence structure (rut)t = (rF)r, where the flux is given by F =
c(rur + (n − 2)u) + (k/(p + 1))u p+1

r . We note that, in the case c = 0, this divergence structure
coincides with the alternative divergence structure (15), since the relation k = (p + 1)(n − 1)b is
equivalent to m = 1.

We will now summarize the structure of the vector space spanned by the conserved quantities
(25) arising from these kinematic conserved densities.

Theorem 8: A multi-dimensional, hyperbolic, nonlinear radial wave equation (5b) admits
kinematic conservation laws only in the following cases:

(i) For c �= 0, k = (p + 1)b �= 0, a basis of kinematics conserved quantities is comprised by

C1 =
∫ ∞

0
utr

n−1dr, C2 =
∫ ∞

0
(tut − u)rn−1dr. (131)

(ii) For c �= 0, k = (p + 1)(n − 1)b �= 0, n �= 2, a basis of kinematic conserved quantities is
comprised by

C3 =
∫ ∞

0
utrdr, C4 =

∫ ∞

0
(tut − u)rdr. (132)

(iii) For c = 0, k �= (p + 1)b, a basis of kinematic conserved quantities is comprised by

C1 =
∫ ∞

0
utr

mdr, C2 =
∫ ∞

0
(tut − u)rmdr. (133)

In all cases, the conserved quantities span a 2-dimensional vector space.

The conditions on the coefficients b, c, k = a + b coming from Theorem 8 combined with
Proposition 1 imply the following interesting result.

Corollary 2: A multi-dimensional, hyperbolic, nonlinear radial wave equation (5b) possesses
kinematic conservation laws iff it has a quasilinear divergence structure.

Next, the generalized-energy conserved densities and fluxes are listed in Table IX; corresponding
multipliers are listed in Table X.
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TABLE IX. Generalized-energy conservation laws for (n − 1)(b2(p + 1)2 + c2) �= 0, p(k2 + b2c2(p + 1)2) �= 0.

T X Conditions

1 rn−1( 1
2 (u2

t + cu2
r ) + bh(ur )) −rn−1(cur + bu p+1

r )ut k = (p + 1)b, c �= 0

2
r−2

( 1
2 t(u2

t + cu2
r + 2bh(ur ))

+(rur − u)ut
) − 1

2 r−2
(

r (u2
t + cu2

r + 2kh(ur ))

+2(c + bu p
r )(tut − u)ur

) k = (p + 1)b, c �= 0

n = −1

3 rm
( 1

2 u2
t + b(n − 1)

m
h(ur )

) − rm(kuth(ur)) c = 0

4
1
2 rm

(
(p(m + 3) + 4)t

(
u2

t + 2b(n − 1)

m
h(ur )

)
+2

(
(p + 4)rur + (2m − p)u

)
ut

)
− 1

2 rm
(

(p + 4)r (u2
t + 2kh(ur ))

+2
(
(p(m + 3) + 4)tut

+(2m − p)u
) b(n − 1)

m
u p+1

r
)

c = 0

p �= −4

5 1
3 rm

(
3(tut − u)ut + ktu−2

r

) 1
3 rm

(
k(2tut − u)u−3

r

) c = 0,

p = −4

6 1
6 rm

(
3(tut − u)2 + kt2u−2

r

) 1
3 rm

(
kt(tut − u)u−3

r

) c = 0

p = −4

7 urut − 1
2 (u2

t + 2k ln ur ) − (n − 1)b ln r
c = 0,

p = −2

8 1
2 r−2

(
ut (2rur − u)

) − 1
2 r−2

(
b(n − 1)uu−3

r

+r (2u2
t − 3b(n − 1)u−2

r )
)

c = 0,

k = 3b(n − 1)/2,

p = −4

9

1
2 r−1

(
(2u − tut )ut + 2(r ln r )ur ut

+2kt ln ur
) − 1

2

(
(k(2(1 + ln ur ) + ln r ) + u2

t ) ln r

+2k(tut − u)u−1
r r−1

)
c = 0,

k = b(n − 1),

p = −2

10 ( 1
2 u2

t − k(1 − ln ur ))ur − b(n − 1)u/r − 1
6 (u2

t + 6k ln ur )ut

c = 0,

p = −2

11

1
2 rm

(
u
(
u2

t + 2b(n − 1)

m
h(ur )

)
− p − 2

p + 2
r (2k

∫
h(ur )dur + ur u2

t )
) rm

( p − 2

p + 2
r ( 1

6 u2
t + kh(ur ))ut

− b(n − 1)

m
uut u

p+1
r

)
c = 0,

4k = b(1 − n)(p − 2),

p �= −2

12

1
4 r−2

(
2(2u − tut )(u − 3rur )ut

+bt(n − 1)(9rur − u)u−2
r

)
1
4 r−2

(
b(n − 1)(9rur − 2u)(tut − u)u−3

r

−2ru2
t (tut − 3u)

)
c = 0,

4k = b(1 − n)(p − 2),

p = −4

We see from Table IX that these conservation laws are characterized by two distinguished
relations among the coefficients b, c, k: c = 0, or k = (p + 1)b, c �= 0. These relations are simply the
conditions for a radial wave equation (5b) to possess an n-dimensional variational structure (9) or an
alternative variational structure (16) based on the radial power (128). Thus, all generalized-energy
conservation laws for this wave equation correspond to variational symmetries through Noether’s
theorem. We will summarize this correspondence in Subsection IV B 1. In contrast to the situation
for the radial wave equation (5a), some of the symmetries here are of contact type. Interestingly,
all of the generalized-energy multipliers corresponding to the contact symmetries have a product
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TABLE X. Generalized-energy conservation laws for (n − 1)(b2(p + 1)2 + c2) �= 0, p((b + a)2 + b2c2(p + 1)2) �= 0.

Q Conditions

1 rn − 1ut k = (p + 1)b, c �= 0

2 r− 2(tut + rur − u)
k = (p + 1)b, c �= 0
n = −1

3 rmut c = 0

4
rm

( (
p(m + 3) + 4

)
tut

+(p + 4)rur + (2m − p)u
) c = 0

p �= −4

5 rm(2tut − u)
c = 0,

p = −4

6 rmt(tut − u)
c = 0
p = −4

7 ur
c = 0,

p = −2

8 r− 2(2rur − u)
c = 0,

k = 3b(n − 1)/2,

p = −4

9 r− 1(r(ln r)ur − tut + u)
c = 0,

k = b(n − 1),
p = −2

10 urut
c = 0,

p = −2

11 r−4(p+1)/(p−2)
(
u − p − 2

p + 2
rur

)
ut

c = 0,

4k = b(1 − n)(p − 2),
p �= −2

12 r− 2(3rur − u)(tut − u)
c = 0,

4k = b(1 − n)(p − 2),
p = −4

form distinguished by the relations b = 0, or p = − 2, or m = 4(p + 1)/(2 − p). We will show
later in Subsection IV B 2 that these multipliers for the radial wave equation (5b) can be derived
alternatively from a variational type of Morawetz radial identity, which produces conservation laws
from symmetries in a similar way to the generalized-energy conservation laws that arise in the
non-variational case of the radial wave equation (5a) discussed in Subsection (IV A 2).

1. Noether correspondence for utt = (
c + b(p + 1)up

r
)
urr + (n − 1)(cur + bup+1

r )/r and
utt = kup

r urr + (n − 1)bup+1
r /r

In the two variational cases, k = (p + 1)b and c = 0, multipliers for conservation laws of
the radial wave equation (5b) are in one-to-one correspondence to variational symmetries of the
respective Lagrangians (10b) and (16). These cases can be merged if we consider the Lagrangian
functional

L =
∫ ∞

0
Lrm dr, L = 1

2 (−u2
t + cu2

r ) +
∫

F̃(r, ur )dur (134)

given in terms of the expression (15) for F̃ , with the coefficients b, c, k satisfying the condition

c(k − (p + 1)b) = 0. (135)

Then Noether’s theorem states that

X = P∂/∂u (136)

is a variational symmetry satisfying

rmprXL = Dt A + Dr B (137)
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TABLE XI. Generalized-energy conserved quantities and variational point symmetries for (n − 1)(b2(p + 1)2 + c2) �= 0,
p(k2 + b2c2(p + 1)2) �= 0.

X̂ C Conditions

1 and 3 − ∂/∂t
∫ ∞

0
( 1

2 (u2
t + cu2

r ) + b(n − 1)

m
h(ur ))rn−1 dr c(k − (p + 1)b) = 0

2
−t∂/∂t − r∂/∂r

−u∂/∂u

∫ ∞

0

( 1
2 t(u2

t + cu2
r + 2bh(ur )) + (rur − u)ut

)
r−2 dr

k = (p + 1)b, c �= 0

n = −1

4

−(
p(m + 3) + 4

)
t∂/∂t

−(p + 4)r∂/∂r

+(2m − p)u∂/∂u

∫ ∞

0

1
2

(
(p(m + 3) + 4)t

(
u2

t + 2b(n − 1)

m
h(ur )

)
+2

(
(p + 4)rur + (2m − p)u

)
ut

)
rm dr

c = 0

p �= −4

5 − 2t∂/∂t − u∂/∂u
∫ ∞

0

1
3

(
3(tut − u)ut + ktu−2

r

)
rm dr

c = 0,

p = −4

6 − t2∂/∂t − tu∂/∂u
∫ ∞

0

1
6

(
3(tut − u)2 + kt2u−2

r

)
rm dr

c = 0

p = −4

7 − r− m∂/∂r
∫ ∞

0
ur ut dr

c = 0,

p = −2

8 − 2r∂/∂r − u∂/∂u
∫ ∞

0
ut

(
2rur − u

)
r−2 dr

c = 0,

k = 3b(n − 1)/2,

p = −4

9
t∂/∂t − r ln r∂/∂r

+u∂/∂u

∫ ∞

0

1
2

(
(2u − tut )ut + 2(r ln r )ur ut

+2kt ln ur
)
r−1 dr

c = 0, k = b(n − 1),

p = −2

for some scalar functions A and B depending on t, r, u, ut, and r-derivatives of u, ut, if and only if

δL
δu

P = (utt − gurr − f )rm P = Dt T + Dr X (138)

is the characteristic form for a conservation law given by the conserved density and flux

T = A − Q
∂L

∂ut
, X = B − Q

∂L

∂ur
, (139)

where

Q = rm P (140)

is the multiplier.
For the generalized-energy multipliers in Table X, we see that either Q is linear in ut and ur,

Q = utα0(t, r ) + urβ1(t, r ) + uβ0(t, r ), (141)

where α0, β1, β0 have no dependence on u, in which case the corresponding variational symmetry
is a restricted type of point symmetry, or Q involves a product of ut and ur,

Q = ut
(
urα1(t, r ) + α0(t, r, u)

) + urβ1(t, r, u) + β0(t, r, u), (142)

where α1 has no dependence on u, while α0 and β1 are at most linear in u, and β0 is at most
quadratic in u, in which case the corresponding variational symmetry X is a restricted type of contact
symmetry. This correspondence is summarized in Tables XI and XII, where C denotes the conserved
quantity (25) given by the conservation laws, and X̂ denotes the variational symmetry generator
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TABLE XII. Generalized-energy conserved quantities and variational contact symmetries for (n − 1)b(p + 1) �= 0, pk �= 0.

X̂ C Conditions

10

−r−m ( ur ∂/∂t + ut ∂/∂r

+ur ut∂/∂u

+mr−1ur ut ∂/∂ur )

∫ ∞

0
( 1

2 u2
t − k(1 − ln ur ))ur − b(n − 1)u/r dr

c = 0,

p = −2

11

((p − 2)ur − (p + 2)u)∂/∂t

+(p − 2)ut∂/∂r

+(p − 2)ur ut ∂/∂u

+(p + 2)u2
t ∂/∂ut

+(p + 2)ur ut ∂/∂ur

∫ ∞

0

(
u
(
u2

t + 2b(n − 1)

m
h(ur )

)
− p − 2

p + 2
r (2k

∫
h(ur )dur + ur u2

t )
)

rm dr

c = 0,

4k = −b(p − 2)(n − 1),

p �= −2

12

(u − 3rur )∂/∂t

+3r (u − tut )∂/∂r

+(u2 − 3r tur ut )∂/∂u

+(u − tut )ut∂/∂ut

+(2tut − 3rur − u)ur ∂/∂ur

∫ ∞

0

1
4

(
2(2u − tut )(u − 3rur )ut

+bt(n − 1)(9rur − u)u−2
r

)
r−2 dr

c = 0,

4k = −b(p − 2)(n − 1),

p = −4

given by the canonical form

X̂ = r−m(−α0∂/∂t − β1∂/∂r + β0∂/∂u) (143)

in the point case (141), or by

X̂ = r−m

(
− (urα1 + α0)∂/∂t − (utα1 + β1)∂/∂r + β0∂/∂u

+
(

u2
t

∂α0

∂u
+ ut ur

(∂α1

∂t
+ ∂β1

∂u

) + ut
(∂α0

∂t
+ ∂β0

∂u

) + ur
∂β1

∂t
+ ∂β0

∂t

)
∂/∂ut

+
(

u2
r

∂β1

∂u
+ ut ur

(∂α1

∂r
+ ∂α0

∂u

) + ut
∂α0

∂r
+ ur

(∂β1

∂r
+ ∂β0

∂u

) + ∂β0

∂r

)
∂/∂ut

)
(144)

in the contact case (142).
Conserved quantity C1(=C3) is an energy arising from the time-translation symmetry

X̂1(= X̂3). Conserved quantities C2, C4, and C5 are similarity energies arising from the scaling
symmetries X̂2, X̂4, and X̂5, while conserved quantity C9 is a logarithmic counterpart of C4. Con-
served quantity C8 and C7 are radial momenta arising respectively from the radial scaling symmetry
X̂8 and the non-rigid dilation symmetry X̂7. Conserved quantity C6 is a conformal energy arising
from the temporal inversion symmetry X̂6.

We will now state the vector space structure spanned by these conserved quantities as well as
the algebra structure determined by the corresponding variational symmetries.

Theorem 9: For a multi-dimensional, hyperbolic, nonlinear radial wave equation (5b) that has
a variational structure (9) when a = pb �= 0, c �= 0, and an alternative variational structure (16)
when c = 0, variational point symmetries are admitted in the following cases, corresponding to all
generalized-energy conservation laws whose multipliers are at most linear in derivatives.

(i) For c = 0, the variational point symmetries comprise the time-translation X̂3; the scaling
symmetry X̂4; the temporal scaling and inversion symmetries X̂5 and X̂6 when p = − 4; the radial
scaling symmetry X̂8 when p = − 4, k = 3b(n − 1)/2; the non-rigid dilation symmetries X̂7 when p
= − 2 and X̂9 when p = − 2, k = b(n − 1). In the subcase p �= − 2, p �= − 4, the time-translation
X̂3 and the scaling X̂4 generate a two-dimensional algebra with the commutator structure

[X̂3, X̂4] = −(p(m + 3) + 4)X̂3. (145)
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The corresponding two-dimensional vector space of conserved quantities is spanned by the energy
C3 and the similarity energy C4. In the subcase p = − 4, k �= 3b(n − 1)/2, the scaling X̂5 and
temporal inversion X̂6 enlarge the commutator structure (145) by

[X̂3, X̂5] = −2X̂3, [X̂4, X̂5] = 0, [X̂3, X̂6] = X̂5, [X̂4, X̂6] = 4(m + 2)X̂6 (146)

generating a four-dimensional algebra whose corresponding vector space of conserved quantities
is spanned by C3, C4, and the similarity energy C5 in addition to the conformal energy C6. In the
subcase p = − 4, k = 3b(n − 1)/2, the radial scaling X̂8 enlarges the commutator structure (145)
and (146) by

[X̂3, X̂8] = [X̂4, X̂8] = [X̂5, X̂8] = [X̂6, X̂8] = 0 (147)

generating a five-dimensional algebra whose corresponding vector space of conserved quantities is
spanned by C3, C4, C5, C6, and C8. In the subcase p = − 2, k �= b(n − 1), the non-rigid dilation
X̂7 enlarges the commutator structure (145) by

[X̂3, X̂7] = 0, [X̂4, X̂7] = 2(m + 1)X̂7 (148)

generating another three-dimensional algebra, whose corresponding vector space of conserved
quantities is spanned by C3, C4, and the radial momentum C7. In the subcase p = − 2, k = b(n
− 1), the non-rigid dilation symmetry X̂9 enlarges the commutator structure (145) and (148) by

[X̂3, X̂9] = X̂3, [X̂4, X̂9] = −2X̂7, [X̂7, X̂9] = −X̂7 (149)

generating a five-dimensional algebra whose corresponding vector space of conserved quantities is
spanned by C3, C4, C7, and the logarithmic similarity energy C9.

(ii) For c �= 0, k = (p + 1)b �= 0, the variational point symmetries comprise the time-translation
X̂1, and the scaling X̂2 when n = − 1. In the subcase n �= − 1, the time-translation X̂1 generates a
one-dimensional algebra, while the corresponding vector space of conserved quantities is spanned
by the energy C1. In the subcase n = − 1, the scaling X̂2 and the time-translation X̂1 generate a
two-dimensional algebra with commutator structure

[X̂1, X̂2] = −X̂1 (150)

while the corresponding vector space of conserved quantities is spanned by C1 and the similarity
energy C2.

We will now state the vector space structure spanned by these generalized-energy conserved
quantities as well as the algebra structure determined by the corresponding variational contact
symmetries.

Theorem 10: For a multi-dimensional, hyperbolic, nonlinear radial wave equation (5b) that
has a variational structure (16) when c = 0, variational contact symmetries are admitted in the
following cases, corresponding to all generalized-energy conservation laws whose multipliers are
nonlinear in derivatives.

(i) For p = − 2, the variational contact symmetries comprise X̂10 generating a one-dimensional
algebra, while the corresponding vector space of conserved quantities is spanned by the generalized-
energy C10.

(ii) For p �= − 2, 4k = − b(n − 1)(p − 2), the variational contact symmetries comprise X̂11

and X̂12. In the subcase p �= − 4, the symmetry X̂11 generates a one-dimensional algebra, while
the corresponding vector space of conserved quantities is spanned by the generalized-energy C11.
In the subcase p = − 4, the symmetries X̂12 and X̂11 generate a two-dimensional algebra with the
commutator structure

[X̂11, X̂12] = 0 (151)

while the corresponding vector space of conserved quantities is spanned by generalized-energies
C12 and C11.
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2. Morawetz-type variational identities for utt = (c + kup
r )urr + (n − 1)(cur + bup+1

r )/r

We will now derive two different Morawetz identities of variational type for the radial wave
equation (5b) in the case c = 0 with k �= 0, b(p + 1) �= 0. The steps are similar to the derivation of
the identity (119) for the non-variational case of the radial wave equation (5a), and so we omit most
details.

To derive the first identity, we use the Lagrangian (16) to write

rm(utt − ku p
r urr − (n − 1)bu p+1

r /r ) = Eu(rm L0) + Eu(rm L1), (152)

where Eu is the 1st order Euler-Lagrange operator (100) (i.e., local variational derivative) with
respect to u, and where

L0 = − 1
2 u2

t , L1 = k

p + 1
h(ur ) (153)

are the temporal and radial parts of the Lagrangian L = L0 + L1. We now multiply equation (152)
by the expression

W = rur − λu, (154)

which represents the characteristic function given by the generator of a scaling transformation on
(r, u), namely δt = 0, δr = r, δu = λu, for some constant λ. By using the operator identity (102)
combined with the radial scaling properties of L0 and L1, we obtain

(rur − λu)Eu(rm L0) = −Eu(rm L̃0) + rm(2r Dr + (m − λ + 1))L0 (155)

and

(rur − λu)Eu(rm L1) = −Eu(rm L̃1) + rm(p − m + 1 − λ(p + 1))L1 (156)

with

L̃0 = 1
2 (rur − λu)u2

t (157)

and

L̃1 = k

p+1
(2r

∫
h(ur )dur+(λu − rur )h(ur ))+θ̃rur = k

p+3
(rur h(ur )+λuh(ur ))+(θ̃+2)rur ,

(158)
where θ̃ = (λ − 1)/(m + 1) when p = − 2 and θ̃ = 0 otherwise. Finally, we require that the terms
in equation (156) containing L1 vanish. This yields

λ = 1 − (n − 1)b/k. (159)

Thus, we have expressed the Euler-Lagrange terms (155) and (156) as the sum of a total variational
derivative Eu(rm L̃) for a new Lagrangian

L̃ = L̃0 + L̃1, (160)

plus a dilational derivative (r Dr + λ̃)(rm L0/2) with

λ̃ = (1 − m − λ)/2 = b(n − 1)(1 − p/2)/k. (161)

As a result, equation (152) multiplied by expression (154) yields the variational dilation identity

rm(rur − λu)
(
utt − ku p

r urr − (n − 1)bu p+2
r /r

) = −Eu(rm L̃) − (r Dr + λ̃)(rmu2
t ). (162)

This identity (162) is able to produce conservation laws from multipliers that are given by certain
symmetries X = P∂/∂u in characteristic form, in a manner similar to Noether’s theorem (39)–(40).
In particular, we consider the time translation

X = ut∂/∂u. (163)

When the identity (162) is multiplied by

P = ut , (164)
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we see first that the Euler-Lagrange term yields a total time derivative

−ut Eu(rm L̃) = Dt
(
rmut

∂ L̃

∂u

) − rmprXL̃ = Dt
(
rmut

∂ L̃

∂u
− rm L̃

)
(165)

since, by inspection, the Lagrangian functional L̃ = ∫ ∞
0 L̃rmdr is invariant under time-translation.

Second, we see that the dilational derivative term produces

−ut (r Dr + λ̃)(rmu2
t ) = −2rm+1u2

t utr − (λ̃ + m)rmu3
t = Dr

( − 2
3rm+1u3

t

) + ( 1
3 (2 − m) − λ̃)rmu3

t ,

(166)
which will reduce to a total radial derivative iff

λ̃ = (2 − m)/3. (167)

Equating expressions (167) and (161), we obtain the condition

4k = −b(n − 1)(p − 2) (168)

and hence

λ = −(m + 1)/3, m = −4(p + 1)(p − 2). (169)

Thus, for a, b, k, λ satisfying conditions (168) and (169), the product of the variational dilation
identity (162) and the symmetry characteristic function (164) yields a conservation law, where the
conserved density and flux are given by T11 and X11 in Table IX while the multiplier is given by
Q11 in Table X. We note that the form of this multiplier consists of rm times the product of the
characteristic functions W = rur − λu and P = ut representing the scaling transformation and the
time-translation symmetry respectively. The similar conservation law given by the conserved density
T12 and flux X12 in Table IX, with the multiplier given by Q12 in Table X, can be obtained from the
variational identity (162) by using the temporal scaling symmetry with the characteristic function P
= tut − u (in place of the previous time-translation symmetry).

To derive the second identity, we omit the radial factor rm from equation (152), which then
yields

utt − ku p
r urr − (n − 1)bu p+1

r /r = Eu(L0) + Eu(L1) + μu p+1
r /r, (170)

where

μ = −(n − 1)b (171)

is the coefficient of the non-variational term. Now, instead of multiplying this equation by the scaling
characteristic function (154), we use

W = ur , (172)

which represents the characteristic function given by the generator of a translation on r. We thereby
obtain

ur Eu(L0) = −Eu(L̃0) + Dr L0 (173)

and

ur Eu(L1) = −Eu(L̃1) (174)

with

L̃0 = 1
2 ur u2

t , L̃1 = k

p + 1
(2

∫
h(ur )dur − ur h(ur )) = k

p + 3
ur h(ur ) + θ̃rur , (175)

where θ̃ = 2k when p = − 2 and θ̃ = 0 otherwise. Substituting expressions (173) and (174) into
equation (170) multiplied by the characteristic function (172), we find

ur
(
utt − ku p

r urr − (n − 1)bu p+2
r /r

) = −Eu(L̃) − Dr ( 1
2 u2

t ) + μu p+2
r /r. (176)
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Finally, we observe that the term u p+2
r /r in equation (176) will be a total radial derivative iff

p = −2 (177)

in which case

μu p+2
r /r = Dr (μ ln r ). (178)

As a result, equation (176) reduces to the variational identity

ur
(
utt − ku p

r urr − (n − 1)bu p+2
r /r

) = −Eu(L̃) − Dr ( 1
2 u2

t + (n − 1)b ln r ), (179)

where

L̃ = L̃0 + L̃1 (180)

is a new Lagrangian. This identity (179) is able to produce conservation laws in a similar way to
the previous identity (162). In particular, we consider the time translation (163). Multiplying the
identity (179) by the characteristic function (164), we see first that the Euler-Lagrange term yields
a total time derivative

−ut Eu(L̃) = Dt
(
ut

∂ L̃

∂u

) − prXL̃ = Dt
(
ut

∂ L̃

∂u
− L̃

)
(181)

since, by inspection, the Lagrangian functional L̃ = ∫ ∞
0 L̃dr is invariant under time-translation.

Second, we see that the radial derivative term produces the total derivatives

−ut Dr ( 1
2 u2

t + (n − 1)b ln r ) = Dr
( − 1

6 u3
t

) + Dt (−(n − 1)bu/r ). (182)

Thus, for p = − 2, the product of the variational identity (179) and the symmetry characteristic
function (164) yields a conservation law, where the conserved density and flux are given by T10 and
X10 in Table IX while the multiplier is given by Q10 in Table X. We note that the form of this multiplier
consists of just the product of the characteristic functions W = ur and P = ut. Interestingly, since the
Lagrangian (180) is explicitly invariant under the shift symmetry X = ∂/∂u with the characteristic
function P = 1, we can use the variational identity (179) to obtain the conservation law given by T7

and X7 given in Table IX, whose multiplier is Q7 shown in Table X.

C. Computational remarks

In the computation of conservation laws for a radial wave equation (5), the multiplier determining
system (30)–(31) is formulated in the jet space whose coordinates are defined by t, r, u, ut, ur, utr,
and urr, where utt is replaced by gurr + f. For both wave equations (5a) and (5b), this determining
system splits with respect to ut, utr, and urr into an overdetermined system of 13 equations for
unknowns Q = α(t, r, u, ur)ut + β(t, r, u, ur), a, b, c, p, and n. The resulting overdetermined
systems are linear in the unknown multiplier components α and β but are nonlinear jointly in all the
unknowns. In particular, the unknown p appears non-polynomially in each overdetermined system
through respective exponents of u and ur.

We again carry out all computations by means of computer algebra. The program CONLAW418

is used to formulate and split the conservation law determining system to get the overdetermined
system, which in turn is solved for the 7 unknowns α, β, a, b, c, p, and n by the package CRACK.19 For
both wave equations (5a) and (5b), CRACK is able to complete the entire computation of multipliers
automatically. Compared to the computation of point symmetries (cf. Sec. III C), the computational
difficulties are similar but the total number of steps needed is approximately 2 to 4 times greater.

Once all solutions of the overdetermined system for multipliers Q are obtained from CRACK,
we compute the conserved densities T and fluxes X interactively in MAPLE 14 by evaluating the
homotopy integrals (34)–(36) whenever possible or by otherwise solving the linear PDE system
(32)–(33). All conditions on the parameters a, b, c, p, and n for a multiplier to exist are imposed at
the start of the MAPLE computation.
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V. CONCLUDING REMARKS

In this paper, we have fully classified all point symmetries (19), kinematic conservation laws
(56)–(57), and generalized-energy conservation laws (46)–(47) for the two classes of nonlinear radial
wave equations (5a) and (5b), which are parameterized in terms of the constant coefficients a, b, c,
and the nonlinearity power p, as well as the dimension n. The only restrictions placed on these five
parameters are that we want each wave equation to be multi-dimensional, hyperbolic, and semilinear
or quasilinear.

Since Noether’s theorem is applicable for the cases in which these wave equations have a
variational formulation, our classification of conservation laws directly yields a corresponding clas-
sification of all variational point symmetries and also variational contact symmetries of a certain
restricted form. We find that such variational cases account for all of the generalized-energy con-
servation laws admitted by radial wave equation (5b) but only some of the generalized-energy
conservation laws admitted by radial wave equation (5a).

In the non-variational cases for radial wave equation (5a), we show that the additional
generalized-energy conservation laws arise through a new type of radial dilation identity that pro-
duces conservation laws from symmetries in a different way than Noether’s theorem. A similar
radial dilation identity for radial wave equation (5b) is able to reproduce the generalized-energy
conservation laws that correspond to all of the variational contact symmetries.

Some of the symmetries and conservation laws found in our classification involve non-integer
values of n. We can interpret such cases by rewriting the wave equations (5a) and (5b) in a 2-
dimensional form in terms of a parameter ν = 2 − n as follows:

(rut )t = (
r (c + bu p)ur − ν(cu + bH (u))

)
r + (a − pb)ru p−1u2

r (183a)

and

(rut )t = (
r (cur + k H̃ (ur )) − νcu

)
r + b(1 − ν)u p+1

r − k H̃ (ur ), (183b)

where

H =

⎧⎪⎨
⎪⎩

1

p + 1
u p+1, p �= −1

ln u, p = −1

(184)

and

H̃ =

⎧⎪⎨
⎪⎩

1

p + 1
u p+1

r , p �= −1

ln ur + b(1 − ν)/k, p = −1

. (185)

This form of the wave equations (5a) and (5b) is applicable for any value of n. The meaning of
ν can be understood through the kinematic quantity

C(t) =
∫ ∞

0
urdr, (186)

which satisfies

d2C

dt2
= νN + S (187)

if lim
r→0

ur = 0, where

N = lim
r→0

(cu + bH (u)), S =
∫ ∞

0
(a − pb)u p−1u2

r rdr (188a)

for equation (183a), and

N = lim
r→0

cu, S =
∫ ∞

0
b(1 − ν)u p+1

r − k H̃ (ur )dr (188b)
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for equation (183b). We see from equation (187) that if u(t, r) is viewed as the amplitude of a
vibrating surface then C(t) describes the net transverse displacement of the surface and hence νN
has the interpretation of a time-dependent forcing term applied to the surface at r = 0.

The symmetries and conservation laws we have obtained in Tables I–XII in Secs. III and IV can
be expected to have several important applications in the analysis of solutions for the n-dimensional
radial wave equations (5) (in the case of positive integer values of n) or the radial surface wave
equations (183) (in the case of all other values of n). For example, in variational cases, both of the
n-dimensional radial wave equations (5) possess a conserved energy as well as a conserved similarity
energy for c = 0 and a conserved conformal energy for c = 0, p = − 4. The multipliers for these
energies can be used to derive useful energy identities in all non-variational cases for these radial
wave equations. Other typical applications for our results have been mentioned in Sec. I and will be
explained in detail elsewhere.

There are several directions in which the work in this paper can be extended. First, we plan
to generalize our classification of symmetries and conservation laws to include all contact sym-
metries (21) and all 1st order conservation laws (29) for the radial wave equations (5) in all cases
n �= 1. Second, in a sequel to the present paper, we plan to determine which of the symmetries and
conservation laws for the n-dimensional case of the radial wave equations (5) can be lifted to yield
corresponding symmetries and conservation laws for the translationally-invariant n-dimensional
wave equations (4).
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