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Symmetries and Casimirs are studied for the
Hamiltonian equations of radial compressible fluid
flow in n > 1 dimensions. An explicit determination
of all Lie point symmetries is carried out, from which
a complete classification of all maximal Lie symmetry
algebras is obtained. The classification includes all Lie
point symmetries that exist only for special equations
of state. For a general equation of state, the hierarchy
of advected conserved integrals found in the recent
work is proved to consist of Hamiltonian Casimirs.
A second hierarchy that holds only for an entropic
equation of state is explicitly shown to comprise
non-Casimirs, which yield a corresponding hierarchy
of generalized symmetries through the Hamiltonian
structure of the equations of radial fluid flow. The
first-order symmetries are shown to generate a non-
abelian Lie algebra. Two new kinematic conserved
integrals found in the recent work are likewise shown
to yield additional first-order generalized symmetries
holding for a barotropic equation of state and an
entropic equation of state. These symmetries produce
an explicit transformation group acting on solutions
of the fluid equations. Since these equations are
well known to be equivalent to the equations of gas
dynamics, all of the results obtained for n-dimensional
radial fluid flow carry over to radial gas dynamics.

1. Introduction
In the recent work [1] on radial compressible fluid
flow in n > 1 dimensions, new conserved integrals
and new advected scalars (invariants) have been
found, which are not inherited by radial reduction
from the known conserved integrals and invariants of
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n-dimensional non-radial fluid flow [2–4]. These ‘hidden’ quantities indicate that, compared to
the full Euler equations governing compressible fluid flow, the radial Euler equations have a
much richer structure. The same results hold for the equations of gas dynamics, which have a
well-known equivalence [5] to the Euler equations of compressible fluid flow.

Two of the new conserved integrals describe kinematic quantities, one being an enthalpy flux
which holds for barotropic equations of state and the other being an entropy-weighted energy
which holds for entropic equations of state. Most interestingly, the new advected scalars comprise
two infinite hierarchies that hold, respectively, for general non-barotropic equations of state and
entropic equations of state. Both hierarchies are generated by a recursion operator applied to
basic advected scalars. Each of the hierarchies gives rise to the corresponding advected integrals
(constants of motion) on transported radial domains, which are obtained in terms of conserved
densities derived from the advected scalars.

These unexpected results motivate the present study of the Hamiltonian structure, Casimirs
and symmetries of the equations for radial fluid flow and radial gas dynamics in n > 1
dimensions, with a general equation of state.

Firstly, all point symmetries will be determined, including any that exist only for special
equations of state. A rich structure of symmetry algebras and attendant equations of state is seen
to exist, which is far wider than the structure of kinematic conserved integrals found in ref. [1].
The corresponding symmetry transformation groups will be described.

Secondly, all Hamiltonian Casimirs up to first order will be determined. It is found that these
coincide with the new advected integrals of zeroth and first order in the hierarchy holding for
a general equation of state. An inductive proof that all of the higher-order advected integrals are
Casimirs is given.

Thirdly, the remaining new advected integrals are shown to not be Casimirs. They
instead give rise to generalized (non-point) symmetries through the general well-known
correspondence between non-Casimir conserved integrals and Hamiltonian symmetries. The
resulting symmetries of the radial compressible fluid equations include subalgebras of first-order
symmetries and higher-order symmetries. This is a ‘hidden’ symmetry structure which does not
arise from radial reduction of the Hamiltonian symmetries admitted by the n-dimensional Euler
equations for the compressible fluid flow. The first-order symmetries are shown to produce an
explicit transformation group acting on solutions of the radial equations.

The main results presented here can have physical applications to explosive flows and
implosive flows (see, e.g. [5–10]), as well as numerous engineering applications (see, e.g. [11,12]).
Moreover, they may be indicative of hidden structure for more general zero-vorticity flows.

The rest of this article is organized as follows. In §2, the equations of radial fluid flow and their
equivalence to the equations of radial gas dynamics are summarized. The Hamiltonian structure
of these equations and attendant properties are presented. In §3, the classification of point
symmetries and algebras is stated. The results on Hamiltonian Casimirs are presented in §4. In §5,
the Hamiltonian symmetries are derived. Finally, some concluding remarks are presented in §6.

Appendix A provides remarks on computational aspects of the main classifications.
Appendix B summarizes some variational identities which are used in the proofs, as well as some
basic definitions.

General results on symmetries can be found in refs. [13–15]. See refs. [16–23] for key work on
the Hamiltonian structure and Casimirs for the non-radial Euler equations. The terminology and
notation in the present work is the same as in ref. [1], which comes from ref. [15] for the material
on symmetries and Hamiltonian structures and from refs. [2,3,24] for the material on conserved
integrals and advected quantities. The mathematical setting will be calculus in jet space [13,15].

2. Radial flow equations and Hamiltonian structure
The radial reduction of the Euler equations of compressible fluid flow in n dimensions without
boundaries is given by the system

Ut + UUr + (pSSr + pρρr)
ρ

= 0, (2.1)
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ρt + (Uρ)r + n − 1
r

Uρ = 0 (2.2)

and St + USr = 0, (2.3)

where U = U(t, r) is the radial component of the fluid velocity, ρ = ρ(t, r) is the fluid density and
S = S(t, r) is the local entropy.

To close this system, an equation of state needs to be specified, which in general is given by

p = p(ρ, S). (2.4)

The space of solutions (U(t, r), ρ(t, r), S(t, r)) of the closed system (2.1)–(2.4) will be denoted as E .
The equation of state (2.4) determines all thermodynamic quantities in terms of the internal

energy e(ρ, S) through the thermodynamic relation T dS = de + p d(1/ρ), where T is the local
temperature. In particular, the internal energy is given by

e(ρ, S) =
∫

p(ρ, S)
ρ2 dρ, (2.5)

which determines

T(ρ, S) = ∂e
∂S

∣∣∣
ρ

=
∫

pS(ρ, S)
ρ2 dρ. (2.6)

The equations governing radial gas dynamics consist of the density equation (2.2) and the
velocity equation formulated as follows:

Ut + UUr + pr

ρ
= 0; (2.7)

together with the pressure equation:

pt + Upr + a2ρ

(
Ur + n − 1

r
U

)
= 0, (2.8)

where

a = a(ρ, p) > 0 (2.9)

is the speed of sound. The pressure equation can be derived from the equation of state (2.4) by use
of the implicit function theorem to obtain S = F(ρ, p), which is then substituted into the entropy
equation (2.3) and simplified using the density equation (2.2), with

a2 = −Fρ

Fp
= ∂p

∂ρ

∣∣∣
S=F(ρ,p)

. (2.10)

Conversely, the entropy equation can be recovered from the pressure equation (2.8) by solving
Fρ + a2(ρ, p)Fp = 0 to obtain S = F(ρ, p), which is then observed to satisfy the entropy equation via
the density and pressure equations.

As a consequence, the equations of state familiar in fluid flow—barotropic, polytropic, ideal
gas—and in gas dynamics—ideal gas law—have a direct correspondence in the equivalent
formulations (2.1)–(2.4), (2.2) and (2.7)–(2.9). Explicit equivalences are given in ref. [1].

(a) Radial Hamiltonian formulation
The radial Euler equations (2.1)–(2.3) possess a Hamiltonian formulation which arises directly
from reduction of the well-known Hamiltonian formulation [3,23] of the n-dimensional Euler
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equations. It is given by

∂t

⎛
⎜⎝

U
ρ

S

⎞
⎟⎠ =H

⎛
⎜⎜⎜⎝

δH
δU

δH
δρ

δH
δS

⎞
⎟⎟⎟⎠ (2.11)

with the Hamiltonian

H =
∫∞

0
ρ

(
1
2

U2 + e
)

rn−1 dr, (2.12)

where

H=

⎛
⎜⎜⎜⎝

0 −Drr1−n r1−n 1
ρ

Sr

−r1−nDr 0 0

−r1−n 1
ρ

Sr 0 0

⎞
⎟⎟⎟⎠ (2.13)

is the (non-canonical) Hamiltonian operator, also known as a co-symplectic operator. Here,
Dr denotes the total r-derivative (see appendix B). A general discussion of the properties of
Hamiltonian (co-symplectic) operators can be found in ref. [15].

The Hamiltonian (2.12) physically describes a conserved energy for radial fluid flow.
This Hamiltonian structure (2.11)–(2.13) corresponds to a Poisson bracket. Specifically, for any

two functionals F and G on the whole radial domain (0, ∞), their Poisson bracket is defined in
terms of Hamiltonian operator (2.13) by

{F, G} =
∫∞

0
(∇T

U,ρ,SFH∇U,ρ,SG)rn−1 dr (2.14)

modulo a trivial functional, where ∇U,ρ,S = (δ/δU, δ/δρ, δ/δS) denotes the variational gradient and
the ‘T’ denotes the transpose. Note that a functional is trivial if its density is a total r-derivative
whereby the functional reduces identically to boundary terms at r = 0 and r → ∞, which will
vanish under suitable conditions.

The Poisson bracket (2.14) is a bilinear map and has the properties that it is skew and obeys
the Jacobi identity, which follow from general results about Hamiltonian operators [15].

In principle, the use of the radial domain (0, ∞) could be replaced by a transported radial
domain V(t), whose points r(t) satisfy (d/dt)r(t) = U(r(t), t). The resulting bracket defined by
{F, G} = ∫

V(t)(∇t
U,ρ,SFH∇U,ρ,SG)rn−1 dr will be skew and continue to obey the Jacobi identity, since

the variation of V(t) will contribute only boundary terms. More development of this approach
will be pursued elsewhere.

If a non-trivial functional F on the whole radial domain has no explicit dependence on t, then
its time evolution is given by

dF
dt

= {F, H} (2.15)

modulo a trivial functional. Hence, such a non-trivial functional F will be a conserved integral if
and only if {F, H} = 0.

Radial gas dynamics has a similar Hamiltonian formulation, which can be derived through
the change of variables (ρ, S) → (ρ, p) together with p(ρ, S) → a2(ρ, p) using the equation of state
relation (2.10). In particular, the variational derivatives transform as follows:

δ

δU

∣∣∣
(U,ρ,S)

= δ

δU

∣∣∣
(U,ρ,p)

, (2.16a)

δ

δρ

∣∣∣
(U,ρ,S)

= δ

δρ

∣∣∣
(U,ρ,p)

+ a2 δ

δp

∣∣∣
(U,ρ,p)

(2.16b)

and
δ

δS

∣∣∣
(U,ρ,S)

=
(

∂p
∂S

) ∣∣∣
ρ

δ

δp

∣∣∣
(U,ρ,p)

. (2.16c)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 A

pr
il 

20
23

 



5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220511

..........................................................

It is then straightforward to see that the Hamiltonian structures (2.11) and (2.13) become

∂t

⎛
⎜⎝

U
ρ

p

⎞
⎟⎠ =Hgas

⎛
⎜⎜⎜⎝

δH
δU

δH
δρ

δH
δp

⎞
⎟⎟⎟⎠ (2.17)

with

Hgas =

⎛
⎜⎜⎜⎝

0 −Drr1−n r1−n 1
ρ

pr − 1
ρ

Drr1−nρa2

−r1−nDr 0 0

−r1−n 1
ρ

pr − r1−nρa2Dr
1
ρ

0 0

⎞
⎟⎟⎟⎠ , (2.18)

where the same Hamiltonian (2.12) is used, with the internal energy e expressed in terms of ρ

and p. This expression can be obtained from ∂e(ρ, S)/∂ρ = (∂e(ρ, p)/∂ρ) + a2(∂e(ρ, p)/∂p) = p2/ρ, as
shown by combining equation (2.5) and relation (2.16b).

The associated Poisson bracket for radial gas dynamics is likewise obtained by putting H→
Hgas and ∇U,ρ,S → ∇U,ρ,p in the definition (2.14).

(b) Conserved integrals
The results in ref. [1] show that the kinematic conserved integrals for the radial Euler equations
(2.1)–(2.3) consist of:

mass
d
dt

∫
V(t)

ρ rn−1 dr = 0, (2.19)

total generalized-entropy
d
dt

∫
V(t)

ρf (S) rn−1 dr = 0, (2.20)

energy
d
dt

∫
V(t)

ρ

(
1
2

U2 + e
)

rn−1 dr = −(rn−1pU)
∣∣∣
∂V(t)

, (2.21)

in the case of a general equation of state p = p(ρ, S), where e = ∫
p(ρ, S)/ρ2 dρ;

dilational energy
d
dt

∫
V(t)

(
tρ

(
1
2

U2 + e
)

− 1
2

rρU
)

rn−1 dr

= −
(

rn−1
(

tU − 1
2

r
)

p
) ∣∣∣

∂V(t)
(2.22)

and

similarity energy
d
dt

∫
V(t)

(
t2ρ

(
1
2

U2 + e
)

− trρU + 1
2

r2ρ

)
rn−1 dr

= −(rn−1t(tU − r)p)
∣∣∣
∂V(t)

, (2.23)

in the case of a polytropic equation of state p = κ(S)ρ1+2/n, where e = n
2 κ(S)ρ2/n and κ is an

arbitrary function;

enthalpy flux
d
dt

∫
V(t)

U dr
∣∣∣E = −

(
e + p

ρ
− 1

2
U2

) ∣∣∣
∂V(t)

(2.24)

for a barotropic equation of state p = p(ρ), where e = ∫
p(ρ)/ρ2 dρ;

entropy-weighted energy
d
dt

∫
V(t)

(
1
2
ρU2f (S) − K(S)

)
rn−1 dr

∣∣∣E
= −

(
1
2

rn−1UK(S)
) ∣∣∣

∂V(t)
(2.25)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 A

pr
il 

20
23

 



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220511

..........................................................

for an entropic equation of state p = κ(S), where e = −κ(S)/ρ and K(S) = ∫
f (S)κ ′(S) dS. Note f

denotes an arbitrary non-constant function of its argument.
In these integrals, V(t) is any radial domain that is transported in the flow, and each of

the balance equations (2.19)–(2.25) holds on the solution space E of the radial fluid equations
(2.1)–(2.4). In general, a conserved integral on V(t) is advected, namely, frozen into the flow, if the
net flux through the moving boundary ∂V(t) is zero. The mass (2.19) and total entropy (2.20) are
advected integrals, whereas the other conserved integrals have non-zero net flux.

A conserved integral is called kinematic if its density (modulo a total r-derivative) is a function
of at most t, r, ρ, S and U; otherwise, if the density depends on r-derivatives of ρ, S and U, then it
is called non-kinematic (or dynamical). The radial Euler equations (2.1)–(2.3) have been shown in
ref. [1] to possess two hierarchies of non-kinematic advected integrals.

One hierarchy holds for a general equation of state p = p(ρ, S):

Il =
∫

V(t)
ρf (J0, J1, . . . , Jl)r

n−1 dr, l = 1, 2, . . . (2.26)

where

Jl =RlS, l = 0, 1, 2, . . . (2.27)

are advected scalars given in terms of a recursion operator

R= r1−n

ρ
Dr. (2.28)

The conserved integral (2.26) is non-trivial at order l ≥ 1 if and only if f is nonlinear in its last
argument, namely fJlJl �≡ 0.

Note that I0 is the entropy integral (2.20), since J0 = S.
The other hierarchy holds only for an entropic equation of state p = κ(S):

I ′
l =

∫
V(t)

ρf (J0, J1, J1,1, J2,1, . . . , Jl, J1,l, J2,l)r
n−1 dr, (2.29)

where

J1,l =Rl−1
(

U2 + (2/n)rpr

ρ

)
, l = 1, 2, . . . (2.30)

and

J2,l =Rl−1
(

A
(

r, U,
pr

ρ

)
− t

)

=
∫ 1

0
Rl

⎛
⎝ r√

U2 + (2/n)(1 − yn)rpr/ρ

⎞
⎠ dy, l = 1, 2, . . . (2.31)

are advected scalars, with

A
(

r, U,
pr

ρ

)
=

∫ r

0

dy√
U2 + (2/n)(1 − (y/r)n)rpr/ρ

=
∫ 1

0

r dy√
U2 + (2/n)(1 − yn)rpr/ρ

. (2.32)

(In each of the preceding integrals, y denotes a different dummy variable.) Here, the conserved
integral (2.29) is non-trivial at order l ≥ 2 if and only if f is nonlinear in at least one of J1,l and J2,l;
at order l = 1, it is non-trivial if and only if f is non-constant in at least one of J1,1 and J2,1.

Note that, as shown in ref. [1], I ′
1 with f = 1

2 J1,1 is equivalent (modulo a trivial integral) to the
energy integral (2.21) with p = κ(S) = −ρe.
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3. Point symmetries
A Lie point symmetry of the radial Euler equations (2.1)–(2.3) is a one-parameter transformation
group on (t, r, ρ, S, U) with a generator

X = τ∂t + ξ∂r + ηρ∂ρ + ηS∂S + ηU∂U (3.1)

whose coefficients are functions of (t, r, ρ, S, U) such that the solution space E of the equations
is mapped into itself. The transformation group can be obtained from the generator via
(t, r, ρ, S, U) → exp(εX)(t, r, ρ, S, U), where ε is the group parameter.

The action of a symmetry transformation group on solutions (U(t, r), ρ(t, r) and S(t, r)) is given
by

U(t, r) → U(t, r) + εPU|(U(t,r),ρ(t,r),S(t,r)) + O(ε2),

ρ(t, r) → ρ(t, r) + εPρ |(U(t,r),ρ(t,r),S(t,r)) + O(ε2)

and S(t, r) → S(t, r) + εPS|(U(t,r),ρ(t,r),S(t,r)) + O(ε2),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.2)

where
Pρ = ηρ − τρt − ξρr, PU = ηU − τUt − ξUr and PS = ηS − τSt − ξSr. (3.3)

The infinitesimal form of this action is given by a generator

X̂ = Pρ∂ρ + PS∂S + PU∂U, (3.4)

which is called the characteristic form of the symmetry.
The solution space E will be invariant if and only if the prolongation of X applied to the radial

Euler equations (2.1)–(2.3) vanishes when evaluated on E .
A simpler, modern formulation of invariance [13–15] comes from using the generator

in characteristic form and is given by the condition that the prolongation of X̂ applied to the
equations (2.1)–(2.3) (namely, their Frechet derivative) must vanish on E :(

DtPU + UDrPU + UrPU + 1
ρ

Dr(pSPS + pρPρ ) − 1
ρ2 (pSSr + pρρr)Pρ

)∣∣∣∣E = 0, (3.5a)

(
DtPρ + Dr(UPρ + ρPU) + n − 1

r
(UPρ + ρPU)

)∣∣∣∣E = 0 (3.5b)

and (DtPS + UDrPS + SrPU)
∣∣∣E = 0, (3.5c)

where Dt and Dr respectively, denote the total t-derivative and total r-derivative (see appendix B).
These three determining equations split with respect to derivatives of (U, ρ, S), yielding an
overdetermined system of partial differential equations (PDEs), which can be solved for τ , ξ ,
ηU, ηρ and ηS along with p(ρ, S) �= const. and n �= 1. This gives the following classification result.
Remarks on the computation are given in appendix A.

Theorem 3.1. (i) For a general equation of state (2.4), the Lie point symmetries are generated by a time
translation ∂t and a dilation t∂t + r∂r. (ii) Additional Lie point symmetries exist only for the equations of
state shown in table 1 and their specializations, modulo an additive constant. (iii) A classification of all
admitted maximal point-symmetry algebras is shown in table 2.

The cases in table 1 are organized by generality of the equation of state. In each case,
the number of extra symmetries counts only those symmetries that do not arise by a linear
combination of symmetries inherited from intersections of more general cases.

In table 2, the cases are organized by dimension and arise from specializations of the equations
of state listed in table 1. The resulting classification is complete in the sense that every point
symmetry admitted for any given equation of state appears among a linear combination of the
listed symmetries or special cases of them. The notation for the algebras is taken from ref. [25].

Note that the equations of state in cases 6 and 7 in table 2 do not appear in table 1. Their
symmetries arise as linear combinations of the symmetries inherited from more general cases.
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Table 1. Equations of state of maximal generality admitting extra Lie point symmetries. f and κ are non-constant functions.

p # extra symmetries

κ (S)f (ρ) 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (ρ) + κ (S) 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (κ (S)ρ)ρ 1+q, q �= −1 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (κ (S)ρ) + k ln ρ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f (ρ) 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ (S)ρ 1+2/n 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

κ (S) 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Specifically, case 6 is given by the intersection of case 2 with f = ρ1+q and case 5 with f =
(κ(S)1/(q+1)ρ)1+q, k = 0, whereby X7 = (q + 1)X3|f=ρ1+q − X6|f=(κ(S)1/(q+1)ρ)1+q,k=0. Likewise, case 7 is

given by the intersection of case 3 with f = k ln ρ and case 4 with f = k ln( eκ(S)/kρ), q = −1, whereby
X8 = −2kX4|f=k ln ρ − X5|f=k ln( eκ(S)/kρ),q=−1.

Similarly, the equations of state in cases 11, 12 and 13 do not appear in table 1 because all of
the symmetries in these cases are directly inherited from the intersection of case 9 with cases 7, 6
and 8, respectively.

Also note that case 8 contains a specialization of case 6, where X′
7 = (1/q)X7|q=2/n.

In cases 8 and 13, the sl(2, R) subalgebra is generated by {X1, X2 − 1
2 X′

7, X9} since X′
7 commutes

with X1 and X9.

Remark. For each case in table 2, it is straightforward to derive a system of differential
equations and inequations that involve only p and n, whose general solution yields p. Such a
characterization of cases is useful for determining which case contains a given equation of state,
by checking which system the equation of state satisfies.

To conclude this discussion of Lie point symmetries, the transformation groups generated by
each symmetry will now be presented.

Proposition 3.2. The infinitesimal symmetries listed in table 2 generate the following transformation
groups (with ε being the group parameter):

X1 : t → t + ε; time translation, (3.6)

X2 : t → eεt, r → eεr; dilation, (3.7)

X5 : r → eqεr, U → eqεU, ρ → e2ερ, S → κ−1(e−2εκ(S));

combined scaling and entropy shift, (3.8)

X8 : r → eεr, U → eεU, ρ → e−2ερ, S → κ−1( e2εκ(S));

combined scaling and entropy shift, (3.9)

X3 : r → eεr, U → eεU, S → κ−1( e2εκ(S));

combined scaling and entropy shift, (3.10)

X7 : r → eqεr, U → eqεU, ρ → e2ερ; scaling, (3.11)

X9 : t → t
(1 − εt)

, r → r
(1 − εt)

, U → (1 − εt)U + εr, ρ → (1 − εt)nρ;

conformal similarity, (3.12)
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Table 2. Maximal Lie point-symmetry algebras. f and κ are non-constant functions; F is a non-zero function.

case p generators and non-zero commutators algebra

1 f (ρ , S) X1 = ∂t , X2 = t∂t + r∂r A2,1
[X1, X2]= X1

2 κ (S)f (ρ) X1, X2, X3 = r∂r + U∂U + 2κ (S)
κ ′(S) ∂S A2,1 ⊕ A1

[X1, X2]= X1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 κ (S) + f (ρ) X1, X2, X4 = 1
κ ′(S)∂S A2,1 ⊕ A1

[X1, X2]= X1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 f (κ (S)ρ)ρ 1+q X1, X2, X5 = qr∂r + qU∂U + 2ρ∂ρ − 2κ (S)
κ ′(S) ∂S A2,1 ⊕ A1

q �= −1 [X1, X2]= X1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 f (κ (S)ρ) + k ln ρ X1, X2, X6 = r∂r + U∂U − 2ρ∂ρ + 2κ (S)
κ ′(S) ∂S A2,1 ⊕ A1

[X1, X2]= X1

6 κ (S)ρ 1+q X1, X2, X3, X7 = qr∂r + qU∂U + 2ρ∂ρ A2,1 ⊕ 2A1
q �= −1 [X1, X2]= X1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 κ (S) + k ln ρ X1, X2, X4, X8 = r∂r + U∂U − 2ρ∂ρ A2,1 ⊕ 2A1
k �= 0 [X1, X2]= X1

8 κ (S)ρ 1+2/n X1, X2, X3, X ′
7 = r∂r + U∂U + nρ∂ρ , sl(2,R) ⊕ 2A1

X9 = t2∂t + r t∂r + (r − tU)∂U − ntρ∂ρ

[X1, X2]= X1, [X1, X9]= 2X2 − X ′
7 , [X2, X9]= X9

9 f (ρ) X1, X2, X10 = F(S)∂S A2,1 ⊕ A∞
(ρf ′)′ �= 0 [X1, X2]= X1
(ρf ′/f )′ �= 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 κ (S) X1, X2, X8, A2,1 ⊕ A1 ⊕ A∞
X11 = ((F(S)κ ′(S))′/κ ′(S))ρ∂ρ + F(S)∂S
[X1, X2]= X1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 k ln ρ X1, X2, X8, X10 A2,1 ⊕ A1 ⊕ A∞
k �= 0 [X1, X2]= X1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 kρ 1+q X1, X2, X7, X10 A2,1 ⊕ A1 ⊕ A∞
k �= 0, q �= −1 [X1, X2]= X1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 kρ 1+2/n X1, X2, X9, X ′
7 , X10 sl(2,R) ⊕ A1 ⊕ A∞

k �= 0 [X1, X2]= X1, [X1, X9]= 2X2 − X ′
7 , [X2, X9]= X9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X4 : S → κ−1(κ(S) + ε); entropy change, (3.13)

X10 : S → H−1(H(S) + ε); entropy change (3.14)

and X11 : ρ → ρκ ′(H−1(H(S) + ε))F
(H−1(H(S) + ε))

(κ ′(S)H(S))
,

S → H−1(H(S) + ε); entropy change, (3.15)

where H′(y) = 1/F(y).
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Some remarks are worthwhile. An invariant of the groups (3.8) and (3.9) is κ(S)ρ. The group
(3.12) acts as a conformal scaling on t, r, U − t/r and ρ, with a scaling factor 1 − εt, where the
scaling weight of t, r, U − t/r is 1, and the scaling weight of ρ is n. The group (3.13) corresponds
to κ(S) → κ(S) + ε. Likewise, groups (3.14) and (3.15) have H(S) → H(S) + ε, while κ ′(S)F(S)/ρ is
an invariant of the latter.

4. Casimirs
A Casimir is a non-trivial functional C = ∫∞

0 Φrn−1 dr such that its Poisson bracket (2.14) with an
arbitrary functional F vanishes:

{C, F} = 0 (4.1)

(modulo a trivial functional). Existence of a Casimir indicates that the Poisson bracket is
degenerate. If the density Φ has no explicit dependence on t, then C is a conserved integral, as
a consequence of relation (2.15). A symmetry characterization of Casimirs is stated in the next
section.

The notion of a Casimir can be generalized by considering functionals

C =
∫

V(t)
Φrn−1 dr (4.2)

on a radial domain V(t) that is transported by the fluid flow. From the definition (2.14) of the
Poisson bracket, the condition (4.1) is equivalent to H∇U,ρ,SC = 0, where H is the underlying
Hamiltonian (co-symplectic) operator. This latter condition can be used as a determining system
to find the Casimirs of the radial Euler equations (2.1)–(2.3). After simplification, the determining
system is given by

EU(rn−1Φ) = 0 and Dr(r1−nEρ (rn−1Φ)) = r1−n Sr

ρ
ES(rn−1Φ) (4.3)

in terms of the Euler operators Ev (see appendix B) with respect to v = (U, ρ, S). It is
computationally straightforward to determine all Casimirs given by conserved densities
Φ(r, U, ρ, S, Ur, ρr, Sr) up to first order, modulo trivial conserved densities.

Proposition 4.1. For a general equation of state for the radial Euler equations (2.1)–(2.3), Casimirs
having a conserved density up to first order are given by Φ = ρf (J0, J1), where J0 = S and J1 = r1−nSr/ρ are
the lowest-order invariants in the hierarchy (2.27). No other first-order Casimirs exist for special equations
of state.

Since all first-order Casimirs C = ∫
V(t) ρf (J0, J1)rn−1 dr coincide with the advected integrals I1

of order 1, a natural question is whether the entire hierarchy of these integrals (2.26) is Casimir.

Theorem 4.2. For a general equation of state (2.4), every advected integral (2.26) is a Casimir.

The proof will be given in the next subsection.
By contrast, in the other hierarchy of advected integrals (2.29), which hold only for entropic

equations of state, none are Casimirs apart from the ones that also belong to the first hierarchy.
This result is easily seen from the first equation in the determining system (4.3), which implies
that the conserved density Φ in a Casimir must have no essential dependence on U. Thus, all of
the advected integrals involving at least one of J1,l, J2,l, l = 1, 2, . . . cannot be Casimirs since they
depend explicitly on U (and its r-derivatives).

The question of whether there exist any additional Casimirs is a much harder problem, which
will be left for elsewhere.
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(a) Proof of theorem 4.2
The determining system (4.3) can be expressed in the following form:

EU(Φ̃) = 0 and J1ES(Φ̃) = DrEρ̃ (Φ̃), (4.4)

where ρ̃ = rn−1ρ and Φ̃ = rn−1Φ. Consider, hereafter, Φ = ρf (Jl).
The proof is by induction. Since J0 = S, then Φ̃ = rn−1ρf (J0) = ρ̃f (S), which is the density in the

advected generalized-entropy integral (2.20). Hence, equations (4.4) hold for Φ̃ = ρ̃f (J0).
Now suppose that the determining equations (4.4) hold for Φ̃ = ρ̃f (Jk), k ≥ 0. The induction

step requires showing that the determining equations then hold for Φ̃ = ρ̃f (Jk+1). This will
be accomplished by splitting the equations with respect to derivatives of f , which yields an
equivalent system formulated in terms of Euler–Lagrange operators applied to the invariant Jl
as follows.

Lemma 4.3. The Casimirs determining equations (4.4) are equivalent to the split system

J1ES(Jk) =RJk + DrEρ̃ (Jk) (4.5a)

and
J1E(i)

S (Jk) = DrE
(i)
ρ̃

(Jk) − E(i−1)
ρ̃

(Jk), i = 1, 2, . . . . (4.5b)

To derive this system (4.5) from the two determining equations (4.4), observe that the first
determining equation holds identically, since Jk has no dependence on U and its derivatives.
Next, the second determining equation can be expressed in terms of derivatives of f by use of
the relation

J1
∑
i≥0

(−Dr)i(ρ̃f ′(Jk))E(i)
S (Jk) = ρ̃f ′(Jk)(RJk + DrEρ̃ (Jk)) +

∑
i≥1

(−Dr)i(ρ̃f ′(Jk))(DrE
(i)
ρ̃

(Jk) − E(i−1)
ρ̃

(Jk)).

(4.6)

(This relation holds by Euler operator identity (B 3), with a = ρ̃ and b = Jk.) Because f is an arbitrary
function of Jk, the coefficients of (−Dr)i(ρ̃f ′(Jk)) for i = 0, 1, 2, . . . on each side of equation (4.6) must
be equal. As a result, this equation splits into the system (4.5).

The proof of the induction step now starts from the determining equations (4.4) with Φ̃ =
ρ̃f (Jk+1), where Jk+1 =RJk = (DrJk)/ρ̃ via the recursion operator (2.28). The first equation holds
identically since Jk has no dependence on U and its derivatives. The second equation splits similar
to system (4.5) by use of the relation:

J1
∑
i≥0

((−Dr)i+1f ′(Jk+1))E(i)
S (Jk) = −Drf ′(Jk+1)(Jk+1 + DrEρ̃ (Jk))

+
∑
i≥1

((−Dr)i+1f ′(Jk+1))(DrE
(i)
ρ̃

(Jk) − E(i−1)
ρ̃

(Jk)) (4.7)

(which holds by the Euler operator identity (B 4), with a = ρ̃ and b = Jk). It is easy to see that the
coefficients of (−Dr)i+1f ′(Jk+1)) for i = 0, 1, 2, . . . on each side of this equation are equal due to the
split system (4.5). Hence, the determining equations (4.4) hold for Φ̃ = ρ̃f (Jk+1). This establishes
the induction.

The preceding argument can be extended straightforwardly to the general case, where f
depends on all invariants J0, J1, . . . , Jl. This completes the proof of theorem 4.2.

5. Hamiltonian symmetries
A generalization of infinitesimal Lie point symmetries arises from allowing the components in
the generator (3.1) to depend additionally on derivatives of U, ρ and S, such that the determining
equations (3.5) hold using the characteristic form (3.4) of the generator. If its components
(PU, Pρ , PS) involve derivatives up to order k ≥ 1, then such a generator is called a symmetry
of order k, or sometimes, a generalized (higher-order) symmetry.
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Table 3. Hamiltonian symmetries from kinematic conserved integrals.

conserved integral p (PU , Pρ , PS) symmetry

energy (2.21) f (ρ , S) −Dt(U, ρ , S) time translation X1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dilational κ (S)ρ 1+q (U, (2/q)ρ , 0) − rDr(U, ρ , S) scaling X7
energy (2.22)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

similarity κ (S)ρ 1+q (r − tU,−ntρ , 0) − (t2Dt + rtDr)(U, ρ , S) conformal similarity X9
energy (2.23)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

enthalpy f (ρ) (0, 0,−J1) first order X = −J1∂S
flux (2.24)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

entropy-weighted κ (S) −f (S)Dt(U, ρ , S) + (0, f ′(S)Srρ , 0) first order

energy (2.25) X = f (S)∂t + f ′(S)Srρ∂ρ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Any generalized symmetry in characteristic form (3.4) can be expressed in an equivalent form
(3.1), where τ and ξ are any functions of t, r, U, ρ, S and their derivatives, while ηU, ηρ and ηS are
given by the relations (3.3) in terms of (PU, Pρ and PS). Lie point symmetries are characterized by
the property that there is a unique choice of τ and ξ depending only on t, r, U, ρ and S, for which
ηU, ηρ and ηS have no dependence on derivatives of U, ρ and S.

One main property of the Hamiltonian structure (2.11)–(2.13) is that, for any conserved integral
G = ∫

V(t) Φrn−1 dr, the action of the Hamiltonian operator H yields a generalized symmetry (3.4)
whose components are given by

(PU, Pρ , PS)t =H∇U,ρ,SG, (5.1)

namely,

PU = −Dr(r1−nEρ (rn−1Φ)) + r1−n Sr

ρ
ES(rn−1Φ),

Pρ = −r1−nDrEU(rn−1Φ)

and PS = −r1−n Sr

ρ
EU(rn−1Φ).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.2)

A symmetry of this form is called a Hamiltonian symmetry.
A general result in the Hamiltonian theory [15] states that if F and G are two conserved

integrals, then the commutator of the corresponding Hamiltonian symmetries is a Hamiltonian
symmetry corresponding to the Poisson bracket (2.14) of F and G. Thus, the Poisson bracket
algebra of a closed set of conserved integrals is isomorphic to the Lie algebra of the corresponding
set of Hamiltonian symmetries. If a conserved integral yields a Hamiltonian symmetry that is
trivial, X̂ ≡ 0, then it is a Casimir. In general, Hamiltonian symmetries may not exhaust all of the
symmetries admitted by the Hamiltonian equations of motion.

The Hamiltonian symmetries arising from all of the kinematic conserved integrals (2.19)–(2.25)
possessed by the radial Euler equations (2.1)–(2.3) will now be derived from expressions (5.2).

The mass and generalized-entropy integrals (2.19)–(2.20) yield a trivial symmetry X̂ = 0, since
they are special cases of the Casimir C = I0 = ∫

V(t) ρf (J0) rn−1 dr with f being an arbitrary function
of J0 = S.

For the remaining five kinematic conserved integrals (2.21)–(2.25), the Hamiltonian
symmetries are presented in table 3. For each one, a suitable choice of τ and ξ is made so that
the symmetry generator takes the simplest possible form. The respective choices are given by the
coefficients of Dt and Dr in the expressions for (PU, Pρ , PS) in terms of (U, ρ, S).

As expected, the energy integral (2.21) corresponds to time translation symmetry. The
dilational and similarity energies (2.22) and (2.23) correspond to scaling and conformal similarity
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symmetries, which are Lie point symmetries. The resulting transformation groups generated by
these symmetries are shown in §3.

By contrast, both the enthalpy flux integral (2.24) and the entropy-weighted energy integral
(2.25) correspond to first-order generalized symmetries. Each of these symmetries generates a
transformation group acting on solutions of the radial Euler equations (2.1)–(2.3), where the group
is defined by the system of first-order PDEs for (U∗(t, r; ε), ρ∗(t, r; ε), S∗(t, r; ε)), which consists of

U∗
ε = PU|(U∗,ρ∗,S∗), ρ∗

ε = Pρ |(U∗,ρ∗,S∗) and S∗
ε = PS|(U∗,ρ∗,S∗) (5.3)

in terms of the components of the symmetry generator, with ε denoting the group parameter such
that (U∗(t, r; 0), ρ∗(t, r; 0), S∗(t, r; 0)) = (U(t, r), ρ(t, r), S(t, r)).

For the symmetry arising from the enthalpy flux integral (2.24), the determining system (5.3)
is given by

U∗
ε = 0, ρ∗

ε = 0 and S∗
ε + r1−n S∗

r
ρ∗ = 0. (5.4)

Explicit integration of this system yields the transformation group

U∗ = U(t, r), ρ∗ = ρ(t, r) and S∗ = S(M−1(t, M(t, r) − ε)), (5.5)

where the function M(r) = ∫r
0 ρ(t, r)rn−1 dr is the mass contained in the radial domain [0, r] at any

fixed time t, and M−1 denotes the inverse function. Similarly, the determining system (5.3) defined
by the symmetry arising from the entropy-weighted energy integral (2.25) consists of

U∗
ε + f (S∗)U∗

t = 0, ρ∗
ε + f (S∗)ρ∗

t − f ′(S∗)S∗
r ρ

∗ = 0 and S∗
ε + f (S∗)S∗

t = 0. (5.6)

This first-order system can be integrated to obtain the transformation group given by

U∗ = U(σ , r) and ρ∗ = ρ(σ , r)(1 + εSt(σ , r)f ′(S∗))Sr(σ ,r)/St(σ ,r), (5.7)

with S∗ = S∗(t, r; ε) being the implicit solution of

S∗ = S(σ , r) and σ = t − εf (S∗). (5.8)

In addition to kinematic conserved integrals, the hierarchy of non-kinematic advected integrals
(2.29) for entropic equations of state yield non-trivial Hamiltonian symmetries since, as shown in
the previous section, none of them are Casimirs. The resulting symmetries are more complicated
in comparison to the symmetries presented in table 3.

Firstly, the two simplest advected integrals will be considered:

I ′
1
∣∣
f=J1,1

=
∫

V(t)
ρJ1,1rn−1 dr (5.9)

and

I ′
1
∣∣
f=J2,1

=
∫

V(t)
ρJ2,1rn−1 dr, (5.10)

which involve the advected scalars J1,1 = U2 + (2/n)rpr/ρ and J2,1 = A(r, U, pr/ρ) − t with
A(r, U, pr/ρ) given by expression (2.32).

Recall that, as remarked in §2, the advected integral (5.9) is equivalent to the energy integral
(2.21) (modulo a trivial conserved integral) specialized to the case of an entropic equation of state.
For this conserved integral, the correspondence (5.2) yields (PU, Pρ , PS) = 2Dt(U, ρ, S), which is
equivalent to a time translation symmetry

XJ1,1 = −2X1. (5.11)

For the other advected integral (5.10), the correspondence (5.2) gives (PU, Pρ , PS) =
−(J1,2)UDr(U, ρ, S) − ((J1,2)r, ρ(Dr(J1,2)U + ((n − 1)/r)(J1,2)U), 0). This yields the second-order
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symmetry

XJ2,1 = AU∂r − Ar∂U − ρ

(
DrAU + n − 1

r
AU

)
∂ρ . (5.12)

The two symmetries (5.11) and (5.12) commute, namely, [prX̂J1,1 , prX̂J2,1 ] = 0 using their
characteristic form (3.4), where pr denotes prolongation.

Similar results hold for the whole hierarchy of advected integrals (2.29). A proof is provided
in the next subsection.

Theorem 5.1. The advected integral

I ′
l

∣∣
f (J1,l,J2,l)

=
∫

V(t)
ρf (J1,l, J2,l)r

n−1 dr, (5.13)

for any l ≥ 1, yields the lth-order Hamiltonian symmetry

Xf (J1,l,J2,l) = −2f (l−1)
1,l ∂t + AUf (l−1)

2,l ∂r − Arf
(l−1)
2,l ∂U

+
(

2Dtf
(l−1)
1,l − Dr(AUf (l−1)

2,l ) − n − 1
r

AUf (l−1)
2,l

)
ρ∂ρ , (5.14)

where f (i)
·,l = (−R)ifJ·,l , with R being the recursion operator (2.28).

The set of all symmetries (5.14) comprises a Lie algebra which has a non-trivial commutator
structure. As an illustration, consider the lowest-order case l = 1. Then a direct computation shows
that

[prX̂f (J1,1,J2,1), prX̂g(J1,1,J2,1)] = prX̂h(J1,1,J2,1) and h = 2fJ1,1 gJ2,1 − 2fJ2,1 gJ1,1 . (5.15)

The symmetry Xh(J1,1,J2,1) here will be non-trivial if and only if h is not linear in (J1,1, J2,1). For
instance, if f and g are polynomials, then at least one of them must be at least quadratic, otherwise
Xh(J1,1,J2,1) will vanish. A similar result holds for l ≥ 2.

Thus, the radial Euler equations (2.1)–(2.3) possess a rich structure of Hamiltonian symmetries.

(a) Proof of theorem 5.1
The first step will use the following result for evaluating the Euler operator applied to the
densities in the two integrals (5.13).

Lemma 5.2. Let K = K(r, U, ρ, S, Sr) and f (K) be arbitrary (smooth) functions of their arguments.
Denote Ki =RiK and f (i)

K = (−R)if ′(K), i ≥ 0, using the recursion operator (2.28). Then:

EU(rn−1ρf (Kl)) = f (l)
K EU(rn−1ρK), (5.16)

ES(rn−1ρf (Kl)) = f (l)
K ES(rn−1ρK) − (Drf

(l)
K )E(1)

S (rn−1ρK) (5.17)

and Eρ (rn−1ρf (Kl)) = f (l)
K Eρ (rn−1ρK) + rn−1(f − Dlf

′), (5.18)

where Dl = ∑
0≤i≤l Kl−i(−R)i. Moreover,

Dr(f (Kl) − Dlf
′(Kl)) = −KDrf

(l)
K . (5.19)

These identities (5.16)–(5.18) can be derived by the following descent argument. Firstly,
consider the left-hand side of (5.16) and successively apply the Euler operator identities (B 4) and
(B 5) using v = U, a = rn−1ρ and b = Kl. This yields: EU(rn−1ρf (Kl)) = ∑

1≤i≤l E(i−1)
U (Kl−1)(−Dr)if ′ =

−∑
1≤i≤l−1 E(i−1)

U (Kl−2)(−Dr)if (1)
K . Iteration of this step leads to the right-hand side of (5.16), using

the property that Ei
U(K) = 0 for i ≥ 1 since K does not depend on derivatives of U. Secondly,

consider the left-hand side of (5.17). The previous steps with v = ρ lead to the righthand side of
(5.17) where the additional term arises because K depends on Sr (but not any higher derivatives
of S). Thirdly, the derivation of (5.18) is similar and uses properties that Ei

ρ (K) = 0 and Ei
ρ (a) = 0

for i ≥ 1, as well as Eρ (a) = rn−1.
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Now, returning to the main proof, the respective cases f = f (J1,1) and f = f (J2,1) will be
considered first. Both cases involve the same steps.

Case f = f (J1,1): Put K = J1,1 into the identities (5.16)–(5.18), where rn−1ρK = rn−1ρU2 +
(2/n)(r/ρ)pr. Use of

EU(rn−1ρJ1,1) = 2rn−1ρU, Eρ (rn−1ρJ1,1) = 2rn−1U2

and ES(rn−1ρJ1,1) = −2rn−1p′, E(1)
S (rn−1ρJ1,1) = 2

n
rnp′

⎫⎪⎬
⎪⎭ (5.20)

leads to the expressions

QU
1,l ≡ EU(rn−1ρf (J1,l)) = 2rn−1ρUf (l)

J1,l
, (5.21)

Qρ

1,l ≡ Eρ (rn−1ρf (J1,l)) = rn−1(U2f (l)
J1,l

+ f −
∑

0≤i≤l

J1,l−if
(i)
J1,l

)
(5.22)

and QS
1,l ≡ ES(rn−1ρf (J1,l)) = − 2

n
p′Dr(rnf (l)

J1,l
). (5.23)

The next step in the proof of this case is to substitute expressions (5.21)–(5.23) into the
correspondence (5.2) to obtain the components (PU, Pρ , PS) of the Hamiltonian symmetry.
Proceeding in order of simplicity: first,

PS = − r1−nSr

ρ
QU

1,l = −2USrf
(l)
J1,l

; (5.24)

second,

Pρ = −r1−nDrQU
1,l = −2(ρU)r + n − 1

r
ρUf (l)

J1,l
− 2ρUDrf

(l)
J1,l

; (5.25)

and finally,

PU = r1−nSr

ρ
QS

1,l − Dr(r1−nQρ

1,l)

= − 2
n

r1−npr

ρ
Dr(rnf (l)

J1,l
) − Dr(U2f (l)

J1,l
+ f − Dlf

′(J1,l))

= −2UUr + pr

ρ
f (l)
J1,l

, (5.26)

which uses Dr(f − Dlf ′(J1,l)) = −J1,lDrf
(l)
J1,l

via identity (5.19).
For the final step in the proof of the first case, the r-derivatives in the expressions (5.24)–(5.26)

can be replaced in terms of t-derivatives through the radial Euler equations (2.1)–(2.3). Likewise,
since J1,l is an advected invariant, it satisfies DtJ1,l + UDrJ1,l = 0, which implies UDrf

(l)
K (J1,l) =

−Dtf
(l)
K (J1,l) since R is a recursion operator on advected invariants. Hence, this yields

PS = 2Stf
(l)
J1,l

, Pρ = 2Dt(ρf (l)
J1,l

) and PU = 2Utf
(l)
J1,l

, (5.27)

which can be expressed more simply as follows:

(PU, Pρ , PS) = 2f (l)
J1,l

Dt(U, ρ, S) + 2(0, ρDtf
(l)
J1,l

, 0). (5.28)

This gives the Hamiltonian symmetry

Xf (J1,l) = −2f (l−1)
1,l ∂t + (2Dtf

(l−1)
1,l )ρ∂ρ . (5.29)

Case f = f (J2,1): Put K = J2,1 into the identities (5.16)–(5.18), where rn−1ρK = rn−1ρ(A(r, U,
pr/ρ) − t). The use of

EU(rn−1ρJ2,1) = rn−1ρAU, Eρ (rn−1ρJ2,1) = rn−1(J2,1 − prApr )

and ES(rn−1ρJ2,1) = −κ ′(S)Dr(rn−1ρApr ), E(1)
S (rn−1ρJ2,1) = rn−1ρκ ′(S)Apr

⎫⎬
⎭ (5.30)
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leads to the following expressions:

QU
2,l ≡ EU(rn−1ρf (J2,l)) = rn−1ρAUf (l)

J2,l
, (5.31)

Qρ

2,l ≡ Eρ (rn−1ρf (J2,l)) = rn−1

⎛
⎝f − prApr f

(l)
J2,l

−
∑

1≤i≤l

J2,l−if
(i)
J2,l

⎞
⎠ (5.32)

and QS
2,l ≡ ES(rn−1ρf (J2,l)) = −κ ′(S)Dr(rn−1ρApr f

(l)
J2,l

). (5.33)

The components (PU, Pρ , PS) of the Hamiltonian symmetry are then given by

PS = − r1−nSr

ρ
QU

2,l = −SrAUf (l)
J2,l

, (5.34)

Pρ = −r1−nDrQU
1,l = −Dr(ρAUf (l)

J2,l
) − n − 1

r
ρAUf (l)

J2,l
(5.35)

and PU = r1−nSr

ρ
QS

1,l − Dr(r1−nQρ

1,l) = −(Ar + UrAU)f (l)
J2,l

(5.36)

similar to the previous case. Hence,

(PU, Pρ , PS) = −AUf (l)
J2,l

Dr(U, ρ, S) −
(

Arf
(l)
J2,l

, (Dr(AUf (l)
J2,l

) + n − 1
r

AU)ρ, 0
)

(5.37)

gives the Hamiltonian symmetry

Xf (J2,l) = AUf (l−1)
2,l ∂r − Arf

(l−1)
2,l ∂U − (Dr(AUf (l−1)

2,l ) + n − 1
r

AUf (l−1)
2,l )ρ∂ρ . (5.38)

Finally, the general case f = f (J1,l, J2,l) stated in theorem 5.1 is obtained by the same steps.
It is worth remarking that expressions (5.21)–(5.23) and (5.31)–(5.33) are the respective

multipliers that correspond to the conserved integrals I ′
l |f (J1,l) = ∫

V(t) ρf (J1,l)rn−1 dr and I ′
l |f (J2,l) =∫

V(t) ρf (J2,l)rn−1 dr, as shown by general results for conserved integrals of evolution equations
(see, e.g. [13–15]).

6. Concluding remarks
Radial fluid flow in n > 1 dimensions possesses, unexpectedly, a rich structure of point
symmetries and generalized symmetries. The point symmetries comprise time translation, space-
time dilation, scaling and conformal similarity, which are well known for non-radial flow in three
dimensions [26], as well as an entropy shift combined with various scalings, and an entropy
change. These symmetries are found to hold for several different types of equations of state.

The time translation, scaling and conformal similarity are also Hamiltonian symmetries,
which arise from the kinematic conserved integrals for energy, dilational energy and similarity
energy, respectively. The two ‘hidden’ kinematic conserved integrals, describing an enthalpy flux
quantity (2.24) which holds for barotropic equations of state and an entropy-weighted energy
(2.25) which holds for entropic equations of state, give rise to first-order generalized symmetries.
Each of these symmetries is shown to produce a transformation group acting on solutions of the
equations for radial fluid flow.

The hierarchy of advected conserved integrals holding for a general equation of state is proved
to consist of Hamiltonian Casimirs, which correspond to trivial symmetries. By contrast, the
additional hierarchy of advected conserved integrals that hold only for an entropic equation
of state give rise to a corresponding hierarchy of non-trivial generalized symmetries. These
symmetries are not inherited from any symmetries of n-dimensional non-radial fluid flow. The
first-order generalized symmetries are explicitly shown to comprise a non-abelian Lie algebra.

All of the preceding results carry over to radial gas dynamics through the well-known
equivalence between the respective governing equations of n-dimensional gas dynamics and n-
dimensional compressible fluid flow. Specifically, when a symmetry generator is expressed solely
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in terms of t, r, U, ρ, p and e, then it manifestly holds for both radial fluid flow and radial gas
dynamics.

There are several directions of interest for future investigation.
One open question is to find a proof of whether the Casimir hierarchy comprises all Casimirs

and likewise whether any more advected conserved integrals exist beyond the Casimirs and the
ones in the hierarchy holding for an entropic equation of state. A similar question is whether
any additional higher-order symmetries exist other than the Hamiltonian ones. Related to this,
an important problem is whether the radial compressible flow equations constitute an integral
system with a bi-Hamiltonian structure, similarly to what occurs in n = 1 dimensions [23].

Another direction would be to generalize the results in the present article and the preceding
work in ref. [1] to spherically symmetric flows in two dimensions, which are more general than
just purely radial flows.

Looking towards applications, an interesting problem is to investigate what implications the
existence of the new conserved integrals will have for understanding the development and
properties of finite-time singularities, which are well known to occur in the Cauchy problem for
classical solutions of one-dimensional compressible flows.
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Appendix A. Computational remarks for symmetries and Casimirs
The overdetermined system that arises from splitting the determining equations (3.5) for
τ , ξ , ηU, ηρ and ηS along with p(ρ, S) �= const. and n �= 1 contains 25 PDEs. Solving this system
is a nonlinear problem which leads to many case distinctions in the solution process. To obtain all
solutions, it is important that no cases are lost when integrability conditions are used and when
differential equations are integrated. The program CRACK [27] is able reliably to carry out the
computation, where the overdetermined system is obtained by the program LiePDE.

CRACK splits the computation repeatedly into cases whenever equations factorize, or
coefficients of functions that are to be substituted may be zero, or integration of single differential
equations with parameters has more than one solution branch.

Once all equations in every case have been solved, the solutions need to be merged into a
complete case tree by eliminating solution cases that are contained in more general cases. In
particular, CRACK may perform case splittings that are necessary to complete the computation
automatically but that do not provide new symmetries or new equations of state.

It is straightforward to use LiePDE to determine if a case distinction in CRACK leads to a new
solution case. The process consists of re-running CRACK from a call to LiePDE with all of the free
constants and free functions in p(ρ, S) being taken as fixed (namely, they are not to be solved for)
in the input and thereby solving only for the symmetry components (3.3). If the output contains
fewer symmetries compared to the original solution case, then the case distinction that does not
produce new symmetries is not necessary.

LiePDE and CRACK have several strengths that are relevant in the present computations of
Lie point symmetries. No cases are lost; the worst that happens is that some consistent set of
equations are left unsolved, and this occurs in only one case. Nearly all steps are done fully
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automatically. Any part of the computation can be done interactively if it is desired or needed. The
whole computation of all cases with all integrations runs in a few seconds on a desktop computer.

The results were checked independently by using Maple similar to the computation of
conserved integrals in ref. [1].

Appendix B. Euler operator identities
For a dependent variable v and an independent variable z, the coordinate space (z, v, vz, vzz, . . .)
defines the jet space of v(z). A total derivative with respect to z is represented by the operator

Dz = ∂z +
∑
j≥0

∂
j+1
z v∂

∂
j
zv

. (B 1)

Then

Ev =
∑
j≥0

(−Dz)j∂
∂

j
zv

and E(i)
v =

∑
j≥0

(
i + j

i

)
(−Dz)j∂

∂
i+j
z v

, i = 1, 2, . . . (B 2)

are, respectively, the Euler operator and the higher Euler operators [13,15] with respect to v. Note
that E(0)

v = Ev .
Let a and b be arbitrary smooth functions on the jet space of v(z), and let f denote a smooth

function of its argument.
The following three identities can be derived similar to the product rule for the Euler operator:

Ev(af (b)) =
∑
i≥0

E(i)
v (b)(−Dz)i(af ′(b)) + E(i)

v (a)(−Dz)if (b), (B 3)

Ev(af (b+1)) =
∑
i≥0

E(i)
v (b)(−Dz)i+1f ′(b+1)

+ E(i)
v (a)(−Dz)i(f (b+1) − b+1f ′(b+1)) (B 4)

and
∑
i≥0

E(i)
v (b+1)(−Dz)i+1f (b+1) =

∑
i≥0

E(i+1)
v (b)(−Dz)i+1

(
(Dzf ′(b+1))

a

)

−
∑
i≥0

∑
j≥0

(
i + j

j

)
E(i+j)

v (a)((−Dz)jb+1)(−Dz)i
(

(Dzf ′(b+1))
a

)
, (B 5)

where b+1 = (Dzb)/a.
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