Calcrostics - a marathon test for the algebraic solution of polynomial systems

Thomas Wolf
Department of Mathematics, Brock University

St.Catharines, Ontario, Canada email: twolf@brocku.ca

May 5, 2010

Outline

Introduction

A Blueprint for a Puzzle
A More Rewarding Version
Related Puzzles
Generation of Puzzles
Beauty as a Guiding Principle
Öne more Step of Generalization + Restriction
References

A Need for Mathematical Puzzles

The online Caribou mathematics contest
www.brocku.ca/caribou
is held Ontario wide 6 times in the school year 2009/10.
It will be held Canada wide 9 times in the coming school year 2010/11.

A Need for Mathematical Puzzles

The online Caribou mathematics contest
www.brocku.ca/caribou
is held Ontario wide 6 times in the school year 2009/10.
It will be held Canada wide 9 times in the coming school year 2010/11.
For each contest 24 questions (and their French translation) are needed.
In addition the contest home web page needed a 'Problem of the Day'.

Addictive Puzzles

What is it that makes some puzzles addictive, like Sudoku, Rubik's Cube or cross word puzzles?

Addictive Puzzles

What is it that makes some puzzles addictive, like Sudoku, Rubik's Cube or cross word puzzles?
They are initially hard but when completed many rewards follow:

Addictive Puzzles

What is it that makes some puzzles addictive, like Sudoku, Rubik's Cube or cross word puzzles?
They are initially hard but when completed many rewards follow:

- In Sudoku each found digit satisfies three requirements (the row, the column and block),

Addictive Puzzles

What is it that makes some puzzles addictive, like Sudoku, Rubik's Cube or cross word puzzles?
They are initially hard but when completed many rewards follow:

- In Sudoku each found digit satisfies three requirements (the row, the column and block),
- When Rubik's Cube is completed 6×9 squares are at the right place on the surface of the cube. The player is rewarded 6 times when looking at all uni-colour surfaces.

Addictive Puzzles

What is it that makes some puzzles addictive, like Sudoku, Rubik's Cube or cross word puzzles?
They are initially hard but when completed many rewards follow:

- In Sudoku each found digit satisfies three requirements (the row, the column and block),
- When Rubik's Cube is completed 6×9 squares are at the right place on the surface of the cube. The player is rewarded 6 times when looking at all uni-colour surfaces.
- In cross word puzzles a letter typically completes two words.

Addictive Puzzles

What is it that makes some puzzles addictive, like Sudoku, Rubik's Cube or cross word puzzles?
They are initially hard but when completed many rewards follow:

- In Sudoku each found digit satisfies three requirements (the row, the column and block),
- When Rubik's Cube is completed 6×9 squares are at the right place on the surface of the cube. The player is rewarded 6 times when looking at all uni-colour surfaces.
- In cross word puzzles a letter typically completes two words.
Our strategy is to modify an existing puzzle type towards being more special and satisfying more constraints which provides the user with more rewards when the puzzle is solved.

Addictive Puzzles

What is it that makes some puzzles addictive, like Sudoku, Rubik's Cube or cross word puzzles?
They are initially hard but when completed many rewards follow:

- In Sudoku each found digit satisfies three requirements (the row, the column and block),
- When Rubik's Cube is completed 6×9 squares are at the right place on the surface of the cube. The player is rewarded 6 times when looking at all uni-colour surfaces.
- In cross word puzzles a letter typically completes two words.
Our strategy is to modify an existing puzzle type towards being more special and satisfying more constraints which provides the user with more rewards when the puzzle is solved.
Such puzzles are harder to create - a good task for computers.

Outline

Introduction

A Blueprint for a Puzzle
A More Rewarding Version

Related Puzzles

Generation of Puzzles

Beauty as a Guiding Principle

One more Step of Generalization + Restriction
References

A known Type of Puzzle

Puzzles, like

where each letter represents a digit are fairly well known.

A known Type of Puzzle

Puzzles, like

$$
\begin{array}{rrr}
\mathrm{EDKH} \div \mathrm{KF} & = & \mathrm{AA} \\
- & + & + \\
\mathrm{EDB} \times & \mathrm{J} & =\mathrm{EHCG} \\
= & = & = \\
\mathrm{EEJD} & -\mathrm{DK} & =\mathrm{EEAE}
\end{array}
$$

where each letter represents a digit are fairly well known.
This one has the solution

$1320 \div 24$	$=$	55
-	+	
137×8	$=$	1096
$=$	$=$	
$1183-32$	$=$	1151

A known Type of Puzzle

Puzzles, like

$$
\begin{array}{rrr}
\mathrm{EDKH} \div \mathrm{KF} & = & \mathrm{AA} \\
- & + & + \\
\mathrm{EDB} \times & \mathrm{J} & =\mathrm{EHCG} \\
= & = & = \\
\mathrm{EEJD} & \mathrm{DK} & =\mathrm{EEAE}
\end{array}
$$

where each letter represents a digit are fairly well known.
This one has the solution

$1320 \div 24$	$=$	55
-	+	+
137×8	$=$	1096
$=$	$=$	
$1183-32$	$=$	1151

Brute force guessing: There are $10!=3,628,800$ possible permutations of $(0,1,2, .$.$) , i.e. maps (A, B, C, ..) \rightarrow(0,1,2, .$.$) but$ an educated guessing organized in a genetic learning program needs on average just 1000 guesses.

Automatic Generation

To get a practically unlimited collection of puzzles:

Automatic Generation

To get a practically unlimited collection of puzzles:

- automatic generation

Automatic Generation

To get a practically unlimited collection of puzzles:

- automatic generation
- comfortable to use computer algebra as operators are data but also have to be executed

Automatic Generation

To get a practically unlimited collection of puzzles:

- automatic generation
- comfortable to use computer algebra as operators are data but also have to be executed
- generation of 100's of puzzles per minute

Automatic Generation

To get a practically unlimited collection of puzzles:

- automatic generation
- comfortable to use computer algebra as operators are data but also have to be executed
- generation of 100's of puzzles per minute
- pose extra conditions:
all numbers $\neq 0,1$, all operators,,$+- \times, \div$ have to appear

Automatic Generation

To get a practically unlimited collection of puzzles:

- automatic generation
- comfortable to use computer algebra as operators are data but also have to be executed
- generation of 100's of puzzles per minute
- pose extra conditions:
all numbers $\neq 0,1$, all operators,,$+- \times, \div$ have to appear
- still very many puzzles are found

Automatic Generation

To get a practically unlimited collection of puzzles:

- automatic generation
- comfortable to use computer algebra as operators are data but also have to be executed
- generation of 100's of puzzles per minute
- pose extra conditions:
all numbers $\neq 0,1$, all operators,,$+- \times, \div$ have to appear
- still very many puzzles are found
- we can require extra identities on the diagonals.

Outline

Introduction

A Blueprint for a Puzzle
A More Rewarding Version

Related Puzzles

Generation of Puzzles

Beauty as a Guiding Principle
One more Step of Generalization + Restriction
References

Calcrostics

We call these problems calcrostic because they are showing calculations in a form similar to acrostic word puzzles.
Example:

$$
\begin{array}{rrr}
\mathrm{AB} \times \mathrm{C}= & \mathrm{DEA} \\
+\times \div \div & - \\
\mathrm{AB} \times \mathrm{B}= & \mathrm{EF} \\
== & = & = \\
\mathrm{BC} \times \mathrm{A}= & \mathrm{EF}
\end{array}
$$

Table: A puzzle (P1).

Calcrostics

We call these problems calcrostic because they are showing calculations in a form similar to acrostic word puzzles.
Example:

Table: A puzzle (P1).

24×8	$=192$		
$+\times$	\div	\div	-
24×4	$=$	96	
$=$	$=$	$=$	
48×2	$=$	96	

Table: Its solution (S1).

Calcrostics

We call these problems calcrostic because they are showing calculations in a form similar to acrostic word puzzles.
Example:

$$
\begin{array}{rrr}
\mathrm{AB} \times \mathrm{C}= & \mathrm{DEA} \\
+\times \div \div & - \\
\mathrm{AB} \times \mathrm{B} & =\mathrm{EF} \\
== & = \\
\mathrm{BC} \times \mathrm{A} & =\mathrm{EF}
\end{array}
$$

Table: A puzzle (P1).

$$
\begin{array}{rrrr}
24 \times 8 & =192 \\
+\times \div \div & - \\
24 \times 4 & = & 96 \\
= & = & = \\
48 \times 2 & =96
\end{array}
$$

Table: Its solution (S1).

Can one formulate more puzzles from one solution?

Calcrostics

We call these problems calcrostic because they are showing calculations in a form similar to acrostic word puzzles.
Example:

Table: A puzzle (P1).

24×8	$=192$		
$+\times$	\div	\div	-
24×4	$=$	96	
$=$	$=$	$=$	
48×2	$=$	96	

Table: Its solution (S1).

Can one formulate more puzzles from one solution?
Apart from re-labeling digits with other letters/symbols there are the following equivalence transformations.

Outline

Introduction

A Blueprint for a Puzzle
A More Rewarding Version

Related Puzzles

Generation of Puzzles

Beauty as a Guiding Principle
One more Step of Generalization + Restriction
References

Equivalent Calcrostics

For example, starting with

24×8	$=$	192	
$+\times \div$	\div	-	
24×4	$=$	96	
$=$	$=$	$=$	$=$
48×2	$=$	96	

Table: Solution (S1).
we can swap the first and third row, invert the 3 column operations, swap and invert the diagonal operations and get

48×2	$=$	96
$-\times$	\times	+
24×4	$=$	96
$=$	$=$	$=$
24×8	$=$	192

Table: A new solution (S2).

$$
\begin{aligned}
A B \times C= & D E \\
C \times \times & \div \\
C A \times A= & + \\
== & = \\
C A \times B= & =
\end{aligned}
$$

Table: Its encoding (P2).

Equivalent Calcrostics

By swapping the 1st and 3rd column we obtain from S2:

$$
\begin{array}{r}
96 \div 2=48 \\
+\div \times \times= \\
96 \div 4=24 \\
== \\
19 \div 8=24
\end{array}
$$

$$
\begin{aligned}
& A B \div C=D E \\
&+\div \times \times \\
& A B \div D=C D \\
&===C= \\
& F A C \div E=C D
\end{aligned}
$$

Table: A new solution (S3).
Table: Its encoding (P3).
Swapping again 1st and 3rd row in S3 gives us S4:

$$
\begin{array}{r}
192 \div 8=24 \\
-\div \div \times+ \\
96 \div 4=24 \\
== \\
96 \div 2=48
\end{array}
$$

$$
\begin{aligned}
& \mathrm{ABC} \div \mathrm{D}=\mathrm{CE} \\
&-\div \div+ \\
& \mathrm{BF} \div \mathrm{E}=\mathrm{CE} \\
&=== \\
& \mathrm{BF} \div \mathrm{C}=\mathrm{ED}
\end{aligned}
$$

Table: A new solution (S4). Table: Its encoding (P4). S4 could also be generated from S1 by swapping 1st and 3rd column and inverting some of the operations appropriately.

Equivalent Calcrostics

Starting again from solution S1, by mirroring on the main diagonal gives S 5 :

$$
\begin{array}{r}
24+24=48 \\
\times \times \times \times \\
8 \div 4=2 \\
=== \\
192-96=96
\end{array}
$$

$$
\begin{aligned}
A B+A B & =B C \\
\times \times \times & \times \\
C & \times \\
= & A \\
= & = \\
D E A-E F & =E F
\end{aligned}
$$

Table: A new solution (S5).
Table: Its encoding (P5).
Swapping rows 1 and 3 in S 5 gives S 6 :

$$
\begin{array}{r}
192-96=96 \\
\div \div \div \div \\
8 \div 4=2 \\
==== \\
24+24=48
\end{array}
$$

Table: A new solution (S6).

$$
\begin{aligned}
\mathrm{ABC}-\mathrm{BD} & =\mathrm{BD} \\
\div \div \div & \div \\
\mathrm{E} \div \mathrm{F} & =\mathrm{C} \\
= & == \\
\mathrm{CF}+\mathrm{CF} & =\mathrm{FE}
\end{aligned}
$$

Table: Its encoding (P6).

Equivalent Calcrostics

Swapping columns 1 and 3 in S6 gives S7:

Table: A new solution (S7). Table: Its encoding (P7).
Finally, swapping rows 1 and 3 in S 7 gives S8:

$48-24$	$=$	24
$\times \times \times$	\times	\times
$2 \times 4=$	8	
$=$	$=$	$=$
$96+96=$	192	

Table: A new solution (S8).

Table: Its encoding (P8).

Comments

- These 8 versions correspond to the 8 symmetry operations on squares (from 4 rotations + reflection, or from 3 reflections).

Comments

- These 8 versions correspond to the 8 symmetry operations on squares (from 4 rotations + reflection, or from 3 reflections).
- Do all 8 equivalent puzzles have a unique solution if one of them has a unique solution?

Comments

- These 8 versions correspond to the 8 symmetry operations on squares (from 4 rotations + reflection, or from 3 reflections).
- Do all 8 equivalent puzzles have a unique solution if one of them has a unique solution?
Yes, all solutions satisfy the same system of 8 equations up to permutation of letters and a rewriting of individual equations, e.g. $a+b=c \leftrightarrow c-b=a$. None of the two operations changes the number of solutions of the system.

Comments

- These 8 versions correspond to the 8 symmetry operations on squares (from 4 rotations + reflection, or from 3 reflections).
- Do all 8 equivalent puzzles have a unique solution if one of them has a unique solution?
Yes, all solutions satisfy the same system of 8 equations up to permutation of letters and a rewriting of individual equations, e.g. $a+b=c \leftrightarrow c-b=a$. None of the two operations changes the number of solutions of the system.
- If one version involves all 4 operations (like P1), then an equivalent version may involve fewer operations though (e.g. P8 has no \div).

Outline

Introduction

A Blueprint for a Puzzle
A More Rewarding Version

Related Puzzles

Generation of Puzzles

Beauty as a Guiding Principle

One more Step of Generalization + Restriction
References

A Total Ordering of Calcrositics

From now on the term 'calcrostic' shall denote the group of 8 equivalent solutions and their encodings.
The question of membership of a specific calcrostic in a given large set is easy if one has a total ordering of them.
This is equivalent to having an algorithm to generate all calcrostics, one after another.
The following is a natural ordering.

Standard Form

For the following discussion we write the numbers in the puzzle in the form of a 3×3 matrix

a	b	c
d	f	g
h	k	m

where lower case $a, b, .$. denote whole numbers, not digits. At first we use horizontal and vertical reflection to determine a rotation which makes the upper left corner minimal compared to all other 3 corners in the following sense. For example, the comparison between the two top corners would be:

$$
\begin{aligned}
(a+b+c)<(b+c+g) & \text { or } \\
((a+b+c)=(b+c+g) & \text { and } \quad(\quad(a<c) \text { or } \\
& \\
& ((a=c) \text { and }(\min (b, d)<\min (b, g)))))
\end{aligned}
$$

Then we use the diagonal mirroring to have

$$
d>b \text { or }(d=b \text { and }(h>c \text { or }(h=c \text { and } k \geq g)))
$$

Generation of individual Calcrostics

A computer program searching for calcrostics involves many nested loops. From the 9 numbers

a	b	c
d	f	g
h	k	m

one needs only one loop variable (the sum $s:=a+b+d+f$) to go to infinity which ensures for all 9 numbers to be of similar magnitude and avoids to generate, for example, infinitely many puzzles with $a=1$.

Generation of individual Calcrostics

A computer program searching for calcrostics involves many nested loops. From the 9 numbers

a	b	c
d	f	g
h	k	m

one needs only one loop variable (the sum $s:=a+b+d+f$) to go to infinity which ensures for all 9 numbers to be of similar magnitude and avoids to generate, for example, infinitely many puzzles with $a=1$.
The nested loops are: $\forall s=4 . . \infty, \quad \forall f=1 . .(s-3)$,
$\forall b=1 . .(s-f-2), \quad \forall d=1 . .(s-f-b-1), \quad \forall$ operators,...

Generation of individual Calcrostics

A computer program searching for calcrostics involves many nested loops. From the 9 numbers

a	b	c
d	f	g
h	k	m

one needs only one loop variable (the sum $s:=a+b+d+f$) to go to infinity which ensures for all 9 numbers to be of similar magnitude and avoids to generate, for example, infinitely many puzzles with $a=1$.
The nested loops are: $\forall s=4 . . \infty, \quad \forall f=1 . .(s-3)$,
$\forall b=1 . .(s-f-2), \quad \forall d=1 . .(s-f-b-1)$, \forall operators,...
Each solution has to be encoded to a puzzle, the puzzle needs to be solved and checked that it has only one solution.

Generation of individual Calcrostics

A computer program searching for calcrostics involves many nested loops. From the 9 numbers

a	b	c
d	f	g
h	k	m

one needs only one loop variable (the sum $s:=a+b+d+f$) to go to infinity which ensures for all 9 numbers to be of similar magnitude and avoids to generate, for example, infinitely many puzzles with $a=1$.
The nested loops are: $\forall s=4 . . \infty, \forall f=1 . .(s-3)$,
$\forall b=1 . .(s-f-2), \quad \forall d=1 . .(s-f-b-1)$, \forall operators,...
Each solution has to be encoded to a puzzle, the puzzle needs to be solved and checked that it has only one solution.
In this way all calcrostics in standard form with $s \leq 1000$ were generated including all their equivalent forms.

Generation of Families of Calcrostics

A different approach to generating calcrostics:

- fix operators first,
- formulate and solve a polynomial system for the 9 unknown numbers a, b, \ldots, m.

Generation of Families of Calcrostics

A different approach to generating calcrostics:

- fix operators first,
- formulate and solve a polynomial system for the 9 unknown numbers a, b, \ldots, m.

For example,

$$
\begin{aligned}
& a+b=c \\
& \times-++- \\
& d+f=g \\
& ===== \\
& h \div k=m
\end{aligned}
$$

results in the (non-linear) system of equations:

$$
\begin{aligned}
& 0=a+b-c=a \times d-h=a-f-m \\
& 0=d+f-g=b+f-k=c+f-h \\
& 0=h-k \times m=c-g-m
\end{aligned}
$$

Generation of Families of Calcrostics

It's general solution has one free parameter:

$$
\begin{array}{rlll}
\mathrm{a} & +2 & = & (\mathrm{a}+2) \\
\times & - & + & - \\
2 & +(a-2) & =a \\
= & = & = \\
(2 \times a) & \div a & = & 2
\end{array}
$$

Comments:

- A general solution may have free parameters providing a whole family of calcrostics.
- By starting with an operator setting of a calcrostic that has been found numerically, one has a guarantee that the resulting polynomial system has a solution and that the general solution contains special solutions involving only positive integers.

Two free Parameters

This calcrostic even contains two free parameters:

$b h^{2}$	-	$b h$	$=$	$b h(h-1)$
-	\times	\times	\div	+
$h(b h-1)$	\times	$b(h-1)$	$=$	$b h(h-1)(b h-1)$
$=$	$=$	$=$	$=$	$=$
h	\times	$b^{2} h(h-1)$	$=$	$b^{2} h^{2}(h-1)$

In addition to an arbitrary number of puzzles of the earlier type, it provides a new type of question:
What are the numbers a, b, \ldots (NOT digits) that satisfy the following puzzle?

$$
\begin{array}{r}
\mathrm{a}-28=c \\
-\times \times \div \\
\mathrm{d} \times \mathrm{f}= \\
=\mathrm{g} \\
==== \\
7 \times \mathrm{k}=
\end{array}
$$

One could of course simplify the question and provide a few of the missing numbers.

Outline

Introduction

A Blueprint for a Puzzle
A More Rewarding Version

Related Puzzles

Generation of Puzzles
Beauty as a Guiding Principle
One more Step of Generalization + Restriction
References

Beautification

Symmetry carries beauty, the $=$ signs on the right hand side and at the bottom not.

Beautification

Symmetry carries beauty, the $=$ signs on the right hand side and at the bottom not.
Mathematically more elegant: avoid such a visual symmetry breaking.

Beautification

Symmetry carries beauty, the = signs on the right hand side and at the bottom not.
Mathematically more elegant: avoid such a visual symmetry breaking.
This is done by replacing all $=$ signs by - signs, so

with the requirement that each line being evaluated gives zero.

Outline

Introduction

A Blueprint for a Puzzle
 A More Rewarding Version
 Related Puzzles
 Generation of Puzzles

Beauty as a Guiding Principle

One more Step of Generalization + Restriction
References

Another Generalization

By changing all $=$ to - the symmetry is still broken by the requirement to evaluate lines from top to bottom and from left to right (but this is less obvious than the = signs. :-)).

Another Generalization

By changing all $=$ to - the symmetry is still broken by the requirement to evaluate lines from top to bottom and from left to right (but this is less obvious than the = signs. :-)).
More importantly, this change invites a nice generalization: Allow any operators where previously = signs were placed.

Another Generalization

By changing all $=$ to - the symmetry is still broken by the requirement to evaluate lines from top to bottom and from left to right (but this is less obvious than the = signs. :-)).
More importantly, this change invites a nice generalization: Allow any operators where previously = signs were placed.
Already without this generalization 10,000's of individual calcrostics were generated. With the generalization even more could be found.

Another Generalization

By changing all $=$ to - the symmetry is still broken by the requirement to evaluate lines from top to bottom and from left to right (but this is less obvious than the = signs. :-)).
More importantly, this change invites a nice generalization: Allow any operators where previously = signs were placed.
Already without this generalization 10,000's of individual calcrostics were generated. With the generalization even more could be found.
\rightarrow Could additional requirements be formulated?

Another Generalization

By changing all $=$ to - the symmetry is still broken by the requirement to evaluate lines from top to bottom and from left to right (but this is less obvious than the = signs. :-)).
More importantly, this change invites a nice generalization: Allow any operators where previously = signs were placed.
Already without this generalization 10,000's of individual calcrostics were generated. With the generalization even more could be found.
\rightarrow Could additional requirements be formulated?
Are there calcrostics where the value of EACH line is zero: horizontal, vertical, the main diagonal, the other diagonal AND ALL SHORTER PARALLEL DIAGONALS?

Existence Problem

Does there exist a setting of operators (o in the diagram) which involves all 4 operators,,$+- \times, \div$ and allows numbers a, b, \ldots, m to exist that give all lines, including off diagonal lines, the value zero?

a	\circ	b	\circ	c
\circ	\circ	\circ	\circ	\circ
d	\circ	f	\circ	g
\circ	\circ	\circ	\circ	\circ
h	\circ	k	\circ	m

Existence Problem

Does there exist a setting of operators (o in the diagram) which involves all 4 operators,,$+- \times, \div$ and allows numbers a, b, \ldots, m to exist that give all lines, including off diagonal lines, the value zero?

a	\circ	b	\circ	c
\circ	\circ	\circ	\circ	\circ
d	\circ	f	\circ	g
\circ	\circ	\circ	\circ	\circ
h	\circ	k	\circ	m

To have solutions involving only positive integer values, each line must include at least one minus sign. This narrows the search to problems of the form

a	\circ	b	\circ	c
\circ	-	\circ	-	\circ
b	\circ	f	\circ	b
\circ	-	\circ	-	\circ
h	\circ	b	\circ	m

A new type of Calcrostic

For each of the 72,000 possible operator settings a polynomial system has to be formulated and solved. Those with solutions include rational numbers, square roots, even complex numbers. One operator setting even allows a positive integer solution:

A new type of Calcrostic

For each of the 72,000 possible operator settings a polynomial system has to be formulated and solved. Those with solutions include rational numbers, square roots, even complex numbers. One operator setting even allows a positive integer solution:

$$
\begin{aligned}
& a-b-c \\
& \begin{array}{llll}
- & - & - & - \\
d & - & \div & g
\end{array} \\
& \times-+-\quad- \\
& h+k-m
\end{aligned}
$$

Table: An operator setting.

A new type of Calcrostic

For each of the 72,000 possible operator settings a polynomial system has to be formulated and solved. Those with solutions include rational numbers, square roots, even complex numbers. One operator setting even allows a positive integer solution:

$$
\begin{aligned}
& a-b-c \\
& \begin{array}{cccc}
- & - & - \\
d & - & - \\
\hline
\end{array} \\
& \times-+-- \\
& h+k-m
\end{aligned}
$$

Table: An operator setting.

$$
\begin{aligned}
& 12-2-10 \\
& \begin{array}{r}
- \\
2
\end{array}-4 \div-2 \\
& \times-+-\quad- \\
& 6+2-8
\end{aligned}
$$

Table: The unique solution.

The formulation and solution of over 13,000 polynomial system on a PC within 2 weeks represents a comprehensive test suite which even exposed one bug in the package CRACK that had not occured before.

Other Sizes

Another generalization:

- arbitrary sizes $m \times n, m, n \geq 3$ possible

Other Sizes

Another generalization:

- arbitrary sizes $m \times n, \quad m, n \geq 3$ possible
- contains $m n$ numbers and $(2 n-1)(2 m-1)-m n$ operators and 'only' $3(m+n-2)$ conditions

Other Sizes

Another generalization:

- arbitrary sizes $m \times n, \quad m, n \geq 3$ possible
- contains $m n$ numbers and $(2 n-1)(2 m-1)-m n$ operators and 'only' $3(m+n-2)$ conditions
- more solutions for higher m, n

Other Sizes

Another generalization:

- arbitrary sizes $m \times n, \quad m, n \geq 3$ possible
- contains $m n$ numbers and $(2 n-1)(2 m-1)-m n$ operators and 'only' $3(m+n-2)$ conditions
- more solutions for higher m, n
- but polynomial system is harder to solve because:

Other Sizes

Another generalization:

- arbitrary sizes $m \times n, \quad m, n \geq 3$ possible
- contains $m n$ numbers and $(2 n-1)(2 m-1)-m n$ operators and 'only' $3(m+n-2)$ conditions
- more solutions for higher m, n
- but polynomial system is harder to solve because: more unknowns and more equations,

Other Sizes

Another generalization:

- arbitrary sizes $m \times n, \quad m, n \geq 3$ possible
- contains $m n$ numbers and $(2 n-1)(2 m-1)-m n$ operators and 'only' $3(m+n-2)$ conditions
- more solutions for higher m, n
- but polynomial system is harder to solve because: more unknowns and more equations, systems have more solutions.

Outline

Introduction

A Blueprint for a Puzzle
A More Rewarding Version

Related Puzzles

Generation of Puzzles
Beauty as a Guiding Principle
One more Step of Generalization + Restriction
References

References

[1] The Caribou Mathematics Contest
http://www.brocku.ca/caribou
[2] T. Wolf, A study of Genetic Algorithms solving a
Combinatorial Puzzle. preprint (1997), 21 pages.
http://lie.math.brocku.ca/twolf/papers/puzzle.ps

Thank you.

