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A Need for Mathematical Puzzles

The online Caribou mathematics contest
www.brocku.ca/caribou
is held Ontario wide 6 times in the school year 2009/10.
It will be held Canada wide 9 times in the coming school year
2010/11.

For each contest 24 questions (and their French translation) are
needed.
In addition the contest home web page needed a ’Problem of
the Day’.
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Addictive Puzzles

What is it that makes some puzzles addictive, like Sudoku,
Rubik’s Cube or cross word puzzles?

They are initially hard but when completed many rewards
follow:

I In Sudoku each found digit satisfies three requirements
(the row, the column and block),

I When Rubik’s Cube is completed 6× 9 squares are at the
right place on the surface of the cube. The player is
rewarded 6 times when looking at all uni-colour surfaces.

I In cross word puzzles a letter typically completes two
words.

Our strategy is to modify an existing puzzle type towards being
more special and satisfying more constraints which provides
the user with more rewards when the puzzle is solved.
Such puzzles are harder to create - a good task for computers.
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A known Type of Puzzle
Puzzles, like

EDKH ÷ KF = AA
− + +

EDB × J = EHCG
= = =

EEJD − DK = EEAE

where each letter represents a digit are fairly well known.

This one has the solution

1320 ÷ 24 = 55
− + +

137 × 8 = 1096
= = =

1183 − 32 = 1151

Brute force guessing: There are 10! = 3, 628, 800 possible
permutations of (0,1,2,..), i.e. maps (A,B,C,..) → (0,1,2,..) but
an educated guessing organized in a genetic learning program
needs on average just 1000 guesses.
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Automatic Generation

To get a practically unlimited collection of puzzles:

I automatic generation
I comfortable to use computer algebra as operators are data

but also have to be executed
I generation of 100’s of puzzles per minute
I pose extra conditions:

all numbers 6= 0, 1,
all operators +,−,×,÷ have to appear

I still very many puzzles are found
I we can require extra identities on the diagonals.
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Calcrostics

We call these problems calcrostic because they are showing
calculations in a form similar to acrostic word puzzles.
Example:

AB × C = DEA
+ × ÷ ÷ −

AB × B = EF
= = = = =

BC × A = EF

Table: A puzzle (P1).

24 × 8 = 192
+ × ÷ ÷ −

24 × 4 = 96
= = = = =

48 × 2 = 96

Table: Its solution (S1).

Can one formulate more puzzles from one solution?
Apart from re-labeling digits with other letters/symbols there are
the following equivalence transformations.



Calcrostics

We call these problems calcrostic because they are showing
calculations in a form similar to acrostic word puzzles.
Example:

AB × C = DEA
+ × ÷ ÷ −

AB × B = EF
= = = = =

BC × A = EF

Table: A puzzle (P1).

24 × 8 = 192
+ × ÷ ÷ −

24 × 4 = 96
= = = = =

48 × 2 = 96

Table: Its solution (S1).

Can one formulate more puzzles from one solution?
Apart from re-labeling digits with other letters/symbols there are
the following equivalence transformations.



Calcrostics

We call these problems calcrostic because they are showing
calculations in a form similar to acrostic word puzzles.
Example:

AB × C = DEA
+ × ÷ ÷ −

AB × B = EF
= = = = =

BC × A = EF

Table: A puzzle (P1).

24 × 8 = 192
+ × ÷ ÷ −

24 × 4 = 96
= = = = =

48 × 2 = 96

Table: Its solution (S1).

Can one formulate more puzzles from one solution?

Apart from re-labeling digits with other letters/symbols there are
the following equivalence transformations.



Calcrostics

We call these problems calcrostic because they are showing
calculations in a form similar to acrostic word puzzles.
Example:

AB × C = DEA
+ × ÷ ÷ −

AB × B = EF
= = = = =

BC × A = EF

Table: A puzzle (P1).

24 × 8 = 192
+ × ÷ ÷ −

24 × 4 = 96
= = = = =

48 × 2 = 96

Table: Its solution (S1).

Can one formulate more puzzles from one solution?
Apart from re-labeling digits with other letters/symbols there are
the following equivalence transformations.



Outline

Introduction

A Blueprint for a Puzzle

A More Rewarding Version

Related Puzzles

Generation of Puzzles

Beauty as a Guiding Principle

One more Step of Generalization + Restriction

References



Equivalent Calcrostics
For example, starting with

24 × 8 = 192
+ × ÷ ÷ −

24 × 4 = 96
= = = = =

48 × 2 = 96

Table: Solution (S1).

we can swap the first and third row, invert the 3 column
operations, swap and invert the diagonal operations and get

48 × 2 = 96
− × × ÷ +

24 × 4 = 96
= = = = =

24 × 8 = 192

Table: A new solution (S2).

AB × C = DE
− × × ÷ +

CA × A = DE
= = = = =

CA × B = FDC

Table: Its encoding (P2).



Equivalent Calcrostics
By swapping the 1st and 3rd column we obtain from S2:

96 ÷ 2 = 48
+ ÷ × × −

96 ÷ 4 = 24
= = = = =

192 ÷ 8 = 24

Table: A new solution (S3).

AB ÷ C = DE
+ ÷ × × −

AB ÷ D = CD
= = = = =

FAC ÷ E = CD

Table: Its encoding (P3).

Swapping again 1st and 3rd row in S3 gives us S4:

192 ÷ 8 = 24
− ÷ ÷ × +

96 ÷ 4 = 24
= = = = =

96 ÷ 2 = 48

Table: A new solution (S4).

ABC ÷ D = CE
− ÷ ÷ × +

BF ÷ E = CE
= = = = =

BF ÷ C = ED

Table: Its encoding (P4).
S4 could also be generated from S1 by swapping 1st and 3rd
column and inverting some of the operations appropriately.



Equivalent Calcrostics
Starting again from solution S1, by mirroring on the main
diagonal gives S5:

24 + 24 = 48
× × × × ×
8 ÷ 4 = 2
= = = = =

192 − 96 = 96

Table: A new solution (S5).

AB + AB = BC
× × × × ×
C ÷ B = A
= = = = =

DEA − EF = EF

Table: Its encoding (P5).

Swapping rows 1 and 3 in S5 gives S6:

192 − 96 = 96
÷ ÷ ÷ ÷ ÷
8 ÷ 4 = 2
= = = = =

24 + 24 = 48

Table: A new solution (S6).

ABC − BD = BD
÷ ÷ ÷ ÷ ÷
E ÷ F = C
= = = = =

CF + CF = FE

Table: Its encoding (P6).



Equivalent Calcrostics

Swapping columns 1 and 3 in S6 gives S7:

96 + 96 = 192
÷ ÷ ÷ ÷ ÷
2 × 4 = 8
= = = = =

48 − 24 = 24

Table: A new solution (S7).

AB + AB = CAD
÷ ÷ ÷ ÷ ÷
D × E = F
= = = = =

EF − DE = DE

Table: Its encoding (P7).

Finally, swapping rows 1 and 3 in S7 gives S8:

48 − 24 = 24
× × × × ×
2 × 4 = 8
= = = = =

96 + 96 = 192

Table: A new solution (S8).

AB − CA = CA
× × × × ×
C × A = B
= = = = =

DE + DE = FDC

Table: Its encoding (P8).



Comments

I These 8 versions correspond to the 8 symmetry operations
on squares (from 4 rotations + reflection, or from 3
reflections).

I Do all 8 equivalent puzzles have a unique solution if one of
them has a unique solution?
Yes, all solutions satisfy the same system of 8 equations
up to permutation of letters and a rewriting of individual
equations, e.g. a + b = c ↔ c − b = a. None of the two
operations changes the number of solutions of the system.

I If one version involves all 4 operations (like P1), then an
equivalent version may involve fewer operations though
(e.g. P8 has no ÷).
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A Total Ordering of Calcrositics

From now on the term ’calcrostic’ shall denote the group of 8
equivalent solutions and their encodings.
The question of membership of a specific calcrostic in a given
large set is easy if one has a total ordering of them.
This is equivalent to having an algorithm to generate all
calcrostics, one after another.
The following is a natural ordering.



Standard Form
For the following discussion we write the numbers in the puzzle
in the form of a 3x3 matrix

a b c
d f g
h k m

where lower case a, b, .. denote whole numbers, not digits.
At first we use horizontal and vertical reflection to determine a
rotation which makes the upper left corner minimal compared
to all other 3 corners in the following sense. For example, the
comparison between the two top corners would be:

(a + b + c) < (b + c + g) or
((a + b + c) = (b + c + g) and ( (a < c) or

((a = c) and (min(b, d) < min(b, g))))).

Then we use the diagonal mirroring to have

d > b or (d = b and (h > c or (h = c and k ≥ g))).



Generation of individual Calcrostics
A computer program searching for calcrostics involves many
nested loops. From the 9 numbers

a b c
d f g
h k m

one needs only one loop variable (the sum s := a + b + d + f )
to go to infinity which ensures for all 9 numbers to be of similar
magnitude and avoids to generate, for example, infinitely many
puzzles with a = 1.

The nested loops are: ∀s = 4..∞, ∀f = 1..(s − 3),
∀b = 1..(s − f − 2), ∀d = 1..(s − f − b − 1), ∀operators, ....
Each solution has to be encoded to a puzzle, the puzzle needs
to be solved and checked that it has only one solution.
In this way all calcrostics in standard form with s ≤ 1000 were
generated including all their equivalent forms.
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Generation of Families of Calcrostics

A different approach to generating calcrostics:
I fix operators first,
I formulate and solve a polynomial system for the 9

unknown numbers a, b, . . . , m.

For example,

a + b = c
× − + + −
d + f = g
= = = = =
h ÷ k = m

results in the (non-linear) system of equations:

0 = a + b − c = a× d − h = a− f −m
0 = d + f − g = b + f − k = c + f − h
0 = h − k ×m = c − g −m
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Generation of Families of Calcrostics

It’s general solution has one free parameter:

a + 2 = (a+2)
× − + + −
2 + (a−2) = a
= = = = =

(2×a) ÷ a = 2

Comments:

I A general solution may have free parameters providing a
whole family of calcrostics.

I By starting with an operator setting of a calcrostic that has
been found numerically, one has a guarantee that the
resulting polynomial system has a solution and that the
general solution contains special solutions involving only
positive integers.



Two free Parameters
This calcrostic even contains two free parameters:

bh2 − bh = bh(h − 1)
− × × ÷ +

h(bh − 1) × b(h − 1) = bh(h − 1)(bh − 1)
= = = = =
h × b2h(h − 1) = b2h2(h − 1)

In addition to an arbitrary number of puzzles of the earlier type,
it provides a new type of question:
What are the numbers a, b, ... (NOT digits) that satisfy the
following puzzle?

a − 28 = c
− × × ÷ +
d × f = g
= = = = =
7 × k = m

One could of course simplify the question and provide a few of
the missing numbers.



Outline

Introduction

A Blueprint for a Puzzle

A More Rewarding Version

Related Puzzles

Generation of Puzzles

Beauty as a Guiding Principle

One more Step of Generalization + Restriction

References



Beautification

Symmetry carries beauty, the = signs on the right hand side
and at the bottom not.

Mathematically more elegant: avoid such a visual symmetry
breaking.
This is done by replacing all = signs by − signs, so

24 × 8 = 192
+ × ÷ ÷ −

24 × 4 = 96
= = = = =

48 × 2 = 96

→

24 × 8 − 192
+ × ÷ ÷ −

24 × 4 − 96
− − − − −

48 × 2 − 96

with the requirement that each line being evaluated gives zero.
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Another Generalization

By changing all = to − the symmetry is still broken by the
requirement to evaluate lines from top to bottom and from left to
right (but this is less obvious than the = signs. :-) ).

More importantly, this change invites a nice generalization:
Allow any operators where previously = signs were placed.
Already without this generalization 10,000’s of individual
calcrostics were generated. With the generalization even more
could be found.
→ Could additional requirements be formulated?
Are there calcrostics where the value of EACH line is zero:
horizontal, vertical, the main diagonal, the other diagonal AND
ALL SHORTER PARALLEL DIAGONALS?
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Existence Problem
Does there exist a setting of operators (◦ in the diagram) which
involves all 4 operators +, −, ×, ÷ and allows numbers
a, b, ..., m to exist that give all lines, including off diagonal lines,
the value zero?

a ◦ b ◦ c
◦ ◦ ◦ ◦ ◦
d ◦ f ◦ g
◦ ◦ ◦ ◦ ◦
h ◦ k ◦ m

To have solutions involving only positive integer values, each
line must include at least one minus sign. This narrows the
search to problems of the form

a ◦ b ◦ c
◦ − ◦ − ◦
b ◦ f ◦ b
◦ − ◦ − ◦
h ◦ b ◦ m
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A new type of Calcrostic

For each of the 72,000 possible operator settings a polynomial
system has to be formulated and solved. Those with solutions
include rational numbers, square roots, even complex numbers.
One operator setting even allows a positive integer solution:

a − b − c
− − − − −
d − f ÷ g
× − + − −
h + k − m

Table: An operator setting.

12 − 2 − 10
− − − − −
2 − 4 ÷ 2
× − + − −
6 + 2 − 8

Table: The unique solution.

The formulation and solution of over 13,000 polynomial system
on a PC within 2 weeks represents a comprehensive test suite
which even exposed one bug in the package CRACK that had
not occured before.
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Other Sizes

Another generalization:
I arbitrary sizes m × n, m, n ≥ 3 possible

I contains mn numbers and (2n − 1)(2m − 1)−mn
operators and ’only’ 3(m + n − 2) conditions

I more solutions for higher m, n
I but polynomial system is harder to solve because:

more unknowns and more equations,
systems have more solutions.
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