Exact solutions of semilinear radial Schrödinger equations by group foliation reduction

Thomas Wolf, Stephen Anco Brock University, St. Catharines, Ontario, Canada, twolf@brocku.ca, sanco@brocku.ca

AMMCS 2015, Session SS-RALSMCL Waterloo, 10 June 2015

KORK ERKER ADAM ADA

Outline

[Introduction](#page-1-0)

[Group Foliation in 5 Steps](#page-25-0)

[Solving the Group-Resolving System](#page-56-0)

[Solutions for the Nonlinear Heat Equation](#page-75-0)

The semilinear radial Schrödinger equations

[Summary](#page-126-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Exact solutions are of interest for understanding

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

 \blacktriangleright blow-up,

Exact solutions are of interest for understanding

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- \blacktriangleright blow-up,
- \blacktriangleright dispersive behaviour,

Exact solutions are of interest for understanding

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- \blacktriangleright blow-up,
- \blacktriangleright dispersive behaviour,
- \blacktriangleright attractors,

Exact solutions are of interest for understanding

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

- \blacktriangleright blow-up,
- \blacktriangleright dispersive behaviour,
- \blacktriangleright attractors,
- \blacktriangleright critical dynamics,

Exact solutions are of interest for understanding

- \blacktriangleright blow-up,
- \blacktriangleright dispersive behaviour,
- \blacktriangleright attractors,
- \blacktriangleright critical dynamics,

as well as for testing numerical solution methods.

KORK ERKER ADAM ADA

Given: a non-linear PDE for a function $f = f(x, y, z)$ which has *x*, *y*, *z* and *f* and f_x , f_y , f_z occuring explicitly in the PDE. Which ansatz may have a chance?

Given: a non-linear PDE for a function $f = f(x, y, z)$ which has *x*, *y*, *z* and *f* and f_x , f_y , f_z occuring explicitly in the PDE. Which ansatz may have a chance?

$$
\blacktriangleright f = f(x, y) \text{ or } f = f(y, z) \text{ or } f = f(z, x) ?
$$

Given: a non-linear PDE for a function $f = f(x, y, z)$ which has *x*, *y*, *z* and *f* and f_x , f_y , f_z occuring explicitly in the PDE. Which ansatz may have a chance?

$$
\blacktriangleright
$$
 $f = f(x, y)$ or $f = f(y, z)$ or $f = f(z, x)$?

$$
f = f(c_{000} + c_{100}x + c_{010}y + c_{001}z + ... + c_{klm}x^{k}y^{l}z^{m})
$$
?

Given: a non-linear PDE for a function $f = f(x, y, z)$ which has *x*, *y*, *z* and *f* and f_x , f_y , f_z occuring explicitly in the PDE. Which ansatz may have a chance?

►
$$
f = f(x, y)
$$
 or $f = f(y, z)$ or $f = f(z, x)$?
\n► $f = f(c_{000} + c_{100}x + c_{010}y + c_{001}z + ... + c_{klm}x^ky^lz^m)$?
\n► $f = p(x) + q(y) + r(z)$?

Given: a non-linear PDE for a function $f = f(x, y, z)$ which has *x*, *y*, *z* and *f* and f_x , f_y , f_z occuring explicitly in the PDE. Which ansatz may have a chance?

►
$$
f = f(x, y)
$$
 or $f = f(y, z)$ or $f = f(z, x)$?
\n► $f = f(c_{000} + c_{100}x + c_{010}y + c_{001}z + ... + c_{klm}x^k y^l z^m)$?
\n► $f = p(x) + q(y) + r(z)$?
\n► $f = p(x, y) + q(y, z) + r(z, x)$?

Given: a non-linear PDE for a function $f = f(x, y, z)$ which has x, y, z and *f* and f_x, f_y, f_z occuring explicitly in the PDE. Which ansatz may have a chance?

►
$$
f = f(x, y)
$$
 or $f = f(y, z)$ or $f = f(z, x)$?
\n► $f = f(c_{000} + c_{100}x + c_{010}y + c_{001}z + ... + c_{klm}x^{k}y^{l}z^{m})$?
\n► $f = p(x) + q(y) + r(z)$?
\n► $f = p(x, y) + q(y, z) + r(z, x)$?

Increasing the generality of the ansatz \rightarrow exponential increase of complexity only marginal increase of chance to find solution

KORK ERKER ADAM ADA

Given: a non-linear PDE for a function $f = f(x, y, z)$ which has *x*, *y*, *z* and *f* and f_x , f_y , f_z occuring explicitly in the PDE. Which ansatz may have a chance?

►
$$
f = f(x, y)
$$
 or $f = f(y, z)$ or $f = f(z, x)$?
\n► $f = f(c_{000} + c_{100}x + c_{010}y + c_{001}z + ... + c_{klm}x^{k}y^{l}z^{m})$?
\n► $f = p(x) + q(y) + r(z)$?
\n► $f = p(x, y) + q(y, z) + r(z, x)$?

Increasing the generality of the ansatz
$$
\rightarrow
$$
 exponential increase of complexity only marginal increase of chance to find solution For a simple minded approach to work it needs to be paired with a special property of the PDE.

KORKARA KERKER DAGA

Given: a non-linear PDE for a function $f = f(x, y, z)$ which has x, y, z and *f* and f_x, f_y, f_z occuring explicitly in the PDE. Which ansatz may have a chance?

►
$$
f = f(x, y)
$$
 or $f = f(y, z)$ or $f = f(z, x)$?
\n► $f = f(c_{000} + c_{100}x + c_{010}y + c_{001}z + ... + c_{klm}x^{k}y^{l}z^{m})$?
\n► $f = p(x) + q(y) + r(z)$?

$$
\blacktriangleright f = p(x, y) + q(y, z) + r(z, x)
$$
?

Increasing the generality of the ansatz \rightarrow exponential increase of complexity only marginal increase of chance to find solution For a simple minded approach to work it needs to be paired with a special property of the PDE.

Advantage of symmetries: They allow simple restrictions, like ∂*f* /∂*z* = 0 if *z* is a symmetry variable without cutting all interesting solutions.

KORK ERKEY EL POLO

Given: a non-linear PDE for a function $f = f(x, y, z)$ which has x, y, z and *f* and f_x, f_y, f_z occuring explicitly in the PDE. Which ansatz may have a chance?

►
$$
f = f(x, y)
$$
 or $f = f(y, z)$ or $f = f(z, x)$?
\n► $f = f(c_{000} + c_{100}x + c_{010}y + c_{001}z + ... + c_{klm}x^{k}y^{l}z^{m})$?
\n► $f = p(x) + q(y) + r(z)$?

$$
\blacktriangleright f = p(x, y) + q(y, z) + r(z, x)
$$
?

Increasing the generality of the ansatz \rightarrow exponential increase of complexity only marginal increase of chance to find solution For a simple minded approach to work it needs to be paired with a special property of the PDE.

Advantage of symmetries: They allow simple restrictions, like ∂*f* /∂*z* = 0 if *z* is a symmetry variable without cutting all interesting solutions.

What other simple cut/ansatz becomes possible in the presence of a (point-)symmetry?KID K@ K R B K R R B K DA C How to apply symmetry group methods to solve PDEs?

 \blacktriangleright Lie's method of symmetry reduction [Lie, Ovsiannikov, Bluman, Olver, ...]

K ロ > K 個 > K ミ > K ミ > 「ミ → の Q Q →

How to apply symmetry group methods to solve PDEs?

- \blacktriangleright Lie's method of symmetry reduction [Lie, Ovsiannikov, Bluman, Olver, ...]
- \triangleright method of group foliation [Lie, Vessiot, Ovsiannikov]
	- $\triangleright \infty$ dimensional symmetry group [Nutku, Fels, Pohjanpelto, Sheftel, Winternitz, Golum, Thompson & Valiquette]
	- \blacktriangleright finite-dimensional symmetry group [Anderson, Fels, Anco & Liu, Anco & Ali & Wolf, Anco & Feng & Wolf]

KORK ERKER ADAM ADA

How to apply symmetry group methods to solve PDEs?

- \blacktriangleright Lie's method of symmetry reduction [Lie, Ovsiannikov, Bluman, Olver, ...]
- \triangleright method of group foliation [Lie, Vessiot, Ovsiannikov]
	- $\triangleright \infty$ dimensional symmetry group [Nutku, Fels, Pohjanpelto, Sheftel, Winternitz, Golum, Thompson & Valiquette]
	- \blacktriangleright finite-dimensional symmetry group [Anderson, Fels, Anco & Liu, Anco & Ali & Wolf, Anco & Feng & Wolf]
- \triangleright Group foliation is a geometrical generalization of symmetry reduction.

KORK ERKER ADAM ADA

Symmetry Reduction

 \triangleright solutions invariant w.r.t. (sub-)group G of symmetries \leftrightarrow fixed points of symmetry generators X_{α}

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

Symmetry Reduction

 \triangleright solutions invariant w.r.t. (sub-)group G of symmetries

KOD KARD KED KED BE YOUR

- \leftrightarrow fixed points of symmetry generators X_{α}
- \triangleright equation for $\mathcal G$ -invariant solutions of PDE
	- \blacktriangleright differential order stays same
	- \blacktriangleright jet space becomes smaller

Symmetry Reduction

- \triangleright solutions invariant w.r.t. (sub-)group $\mathcal G$ of symmetries
	- \leftrightarrow fixed points of symmetry generators X_{α}
- \triangleright equation for $\mathcal G$ -invariant solutions of PDE
	- \blacktriangleright differential order stays same
	- \blacktriangleright jet space becomes smaller
- \triangleright *n*th order PDE reduces to *n*th order ODE iff dim G is sufficiently large

KOD KARD KED KED BE YOUR

Group Foliation

jet space

jet space of invariants of G

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

• orbits of (sub-)group G of symmetries of PDE \Leftrightarrow families of solutions closed w.r.t. action of G

Group Foliation

jet space

iet space of invariants of G

- orbits of (sub-)group G of symmetries of PDE \Leftrightarrow families of solutions closed w.r.t. action of G
- \blacktriangleright equations for G-closed solution families
	- \blacktriangleright differential order is reduced
	- \triangleright size of jet space stays same

Group Foliation

jet space

iet space of invariants of G

- orbits of (sub-)group G of symmetries of PDE
	- \Leftrightarrow families of solutions closed w.r.t. action of G
- \blacktriangleright equations for G-closed solution families
	- \blacktriangleright differential order is reduced
	- \triangleright size of jet space stays same
- ► nth order PDE converts into $(n-1)$ th order system of PDEs
- \blacktriangleright How can one solve the G-invariant system?

Outline

[Introduction](#page-1-0)

[Group Foliation in 5 Steps](#page-25-0)

[Solving the Group-Resolving System](#page-56-0)

[Solutions for the Nonlinear Heat Equation](#page-75-0)

The semilinear radial Schrödinger equations

[Summary](#page-126-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Consider 2nd order PDE in 2 independent variables and 1 dependent variable

 $F(t, x, u, u_t, u_x, u_{tt}, u_{tx}, u_{xx}) = 0$

Consider 2nd order PDE in 2 independent variables and 1 dependent variable

 $F(t, x, u, u_t, u_x, u_{tt}, u_{tx}, u_{xx}) = 0$

Lie symmetry group G with dim $G < \infty$ \Leftrightarrow group of point transformations on (t, x, u) with generators X_a such that pr $X_{c} F = 0$ modulo $F = 0, D_{x} F = 0, D_{t} F = 0, ...$

KORKAR KERKER E VOOR

Consider 2nd order PDE in 2 independent variables and 1 dependent variable

 $F(t, x, u, u_t, u_x, u_{tt}, u_{tx}, u_{xx}) = 0$

Lie symmetry group G with dim $\mathcal{G} < \infty$ \Leftrightarrow group of point transformations on (t, x, u) with generators X_a such that pr $X_{c}F = 0$ modulo $F = 0$, $D_{x}F = 0$, $D_{t}F = 0$, ...

Consider one-dimensional subgroup $G_1 \in \mathcal{G}$ generated by

$$
X = \tau(t, x, u)\partial_t + \xi(t, x, u)\partial_x + \eta(t, x, u)\partial_u
$$

Assume prolonged action on jet space $J^{\infty} = (t, x, u, u_t, u_x, ...)$ is regular and transitive.

KID KA KERKER E VOOR

Consider 2nd order PDE in 2 independent variables and 1 dependent variable

 $F(t, x, u, u_t, u_x, u_{tt}, u_{tx}, u_{xx}) = 0$

Lie symmetry group G with dim $\mathcal{G} < \infty$ \Leftrightarrow group of point transformations on (t, x, u) with generators X_a such that pr $X_{c}F = 0$ modulo $F = 0$, $D_{x}F = 0$, $D_{t}F = 0$, ...

Consider one-dimensional subgroup $G_1 \in \mathcal{G}$ generated by

$$
X = \tau(t, x, u)\partial_t + \xi(t, x, u)\partial_x + \eta(t, x, u)\partial_u
$$

Assume prolonged action on jet space $J^{\infty} = (t, x, u, u_t, u_x, ...)$ is regular and transitive.

Construct group foliation in 5 main steps:

Step 1: Invariantize Coordinates in Jet Space

invariants of X: $y(t, x, u)$, $v(t, x, u)$ s.t. $X y = Xv = 0$ canonical cordinate of X: $z(t, x, u)$ s.t. $X z = 1$.

K ロ > K @ > K 할 > K 할 > (할 > O Q O)

Step 1: Invariantize Coordinates in Jet Space

invariants of X: $y(t, x, u)$, $v(t, x, u)$ s.t. $X y = Xv = 0$ canonical cordinate of X: $z(t, x, u)$ s.t. $X z = 1$.

regularity and transversality \Rightarrow point transformation

$$
(t,x,u)\rightarrow(z,y,v)
$$

coordinate transformation in jet space

$$
J^\infty = (z,y,v,v_z,v_y,v_{yy},v_{yz},v_{zz},\ldots)
$$

Step 1: Invariantize Coordinates in Jet Space

invariants of X: $y(t, x, u)$, $v(t, x, u)$ s.t. $X y = Xv = 0$ canonical cordinate of X: $z(t, x, u)$ s.t. $X z = 1$.

regularity and transversality \Rightarrow point transformation

$$
(t,x,u)\rightarrow(z,y,v)
$$

coordinate transformation in jet space

$$
J^\infty = (z,y,v,v_z,v_y,v_{yy},v_{yz},v_{zz},\ldots)
$$

symmetry generator $X = \partial_{z} \Leftrightarrow \varepsilon$ -translation

 v_y , $v_z(t, x, u, u_t, u_x)$: 1st order differential invariants of pr X. v_{yy} , v_{yz} , $v_{zz}(t, x, u, u_t, u_x, u_t, u_x, u_x)$: 2nd order differential invariants of pr X.

etc.

Example: Nonlinear heat equation

$$
u_t = u_{xx} + \frac{m}{x} u_x + k u^{p+1} \quad p \neq 0, -1, \ \ k \neq 0
$$

 $m =$ non-negative integer \Rightarrow $m + 1$ dim. radial heat conduction $m \neq$ non-negative integer \Rightarrow 2 dim. radial heat conduction with point source $(1 - m)$ lim_{x→0} *u*

KORKARA KERKER DAGA

Example: Nonlinear heat equation

$$
u_t = u_{xx} + \frac{m}{x}u_x + ku^{p+1} \quad p \neq 0, -1, \ \ k \neq 0
$$

 $m =$ non-negative integer \Rightarrow $m + 1$ dim. radial heat conduction $m \neq$ non-negative integer \Rightarrow 2 dim. radial heat conduction with point source $(1 - m)$ lim_{x→0} *u*

symmetry group generated by

 $X = \partial_t$ time translation $X = \partial_x$ (if $m = 0$) space translation $X = 2t\partial_t + x\partial_x - \frac{2}{\rho}$ *p u*∂*^u* scaling

KORK ERKER ADAM ADA

 $\frac{1}{2}$ consider scaling symmetry $X=2t\partial_t + x\partial_x - \frac{2}{p}$ *p u*∂*^u*

Example: Nonlinear heat equation

$$
u_t = u_{xx} + \frac{m}{x}u_x + ku^{p+1} \quad p \neq 0, -1, \ \ k \neq 0
$$

 $m =$ non-negative integer \Rightarrow $m + 1$ dim. radial heat conduction $m \neq$ non-negative integer \Rightarrow 2 dim. radial heat conduction with point source $(1 - m)$ lim_{x→0} *u*

symmetry group generated by

$$
X = \partial_t
$$
 time translation
\n
$$
X = \partial_x
$$
 (if $m = 0$) space translation
\n
$$
X = 2t\partial_t + x\partial_x - \frac{2}{\rho}u\partial_u
$$
 scaling

KORKAR KERKER E VOOR

 $\frac{1}{2}$ consider scaling symmetry $X=2t\partial_t + x\partial_x - \frac{2}{p}$ *p u*∂*^u*

invariants $\zeta(t, x, u)$ s.t. $X\zeta = 0 = 2t\zeta_t + x\zeta_x - \frac{2}{\rho}$ *p u*ζ*^u* \Rightarrow ζ is function of $y = \frac{x^2}{l}$ $\frac{t^2}{t}$, $v = x^{2/p}u$
Example: Nonlinear heat equation

$$
u_t = u_{xx} + \frac{m}{x} u_x + k u^{p+1} \quad p \neq 0, -1, \ \ k \neq 0
$$

 $m =$ non-negative integer \Rightarrow $m + 1$ dim. radial heat conduction $m \neq$ non-negative integer \Rightarrow 2 dim. radial heat conduction with point source $(1 - m)$ lim_{x→0} *u*

symmetry group generated by

$$
X = \partial_t
$$
 time translation
\n
$$
X = \partial_x
$$
 (if $m = 0$) space translation
\n
$$
X = 2t\partial_t + x\partial_x - \frac{2}{\rho}u\partial_u
$$
 scaling

 $\frac{1}{2}$ consider scaling symmetry $X=2t\partial_t + x\partial_x - \frac{2}{p}$ *p u*∂*^u*

invariants $\zeta(t, x, u)$ s.t. $X\zeta = 0 = 2t\zeta_t + x\zeta_x - \frac{2}{\rho}$ *p u*ζ*^u* \Rightarrow ζ is function of $y = \frac{x^2}{l}$ $\frac{t^2}{t}$, $v = x^{2/p}u$

canonical coordinate $z(t, x, u)$ s.t. $Xz = 1$ \Rightarrow *z* = ln *x* + (function of *y*, *v*) = ln *x* (for simplicity)

Example Continued

Change of variables $(t, x, u) \rightarrow (z, y, v)$

$$
x = e^{z}
$$

\n
$$
t = \frac{e^{2z}}{y}
$$

\n
$$
u = e^{-\frac{2}{\rho}z}v
$$

$$
\Rightarrow D_x = z_x D_z + y_x D_y = e^{-z} D_z + 2e^{-z} y D_y
$$

$$
D_t = z_t D_z + y_t D_y = -e^{-2z} y^2 D_y
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

symmetry generator becomes $X = \partial_z$ translation

Step 2: Invariantize Solution Space of PDE

Each orbit of symmetry group G_1 represents a one-parameter family of solutions $u = u(t, x, c_1)$ satisfying

 $F(t, x, u, u_t, u_x, u_{tt}, u_{tx}, u_{xx}) = 0$

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X 2 0

Step 2: Invariantize Solution Space of PDE

Each orbit of symmetry group G_1 represents a one-parameter family of solutions $u = u(t, x, c_1)$ satisfying

$$
F(t, x, u, u_t, u_x, u_{tt}, u_{tx}, u_{xx}) = 0
$$

action of \mathcal{G}_1 on solution is $z \to z + \varepsilon$ in terms of group parameter ε

 \Rightarrow invariantized solution family $v = v(z + \tilde{c}_1, y)$ s.t. $v_z \neq 0$ with $\tilde{c_1} \rightarrow \tilde{c_1} + \varepsilon$ under \mathcal{G}_1

KORKARA KERKER DAGA

Step 2: Invariantize Solution Space of PDE

Each orbit of symmetry group G_1 represents a one-parameter family of solutions $u = u(t, x, c_1)$ satisfying

$$
F(t, x, u, u_t, u_x, u_{tt}, u_{tx}, u_{xx}) = 0
$$

action of \mathcal{G}_1 on solution is $z \to z + \varepsilon$ in terms of group parameter ε

 \Rightarrow invariantized solution family $v = v(z + \tilde{c}_1, y)$ s.t. $v_z \neq 0$ with $\tilde{c}_1 \rightarrow \tilde{c}_1 + \varepsilon$ under \mathcal{G}_1

PDE is invariant w.r.t. $X = \partial_{z}$ $\Leftrightarrow \widetilde{F}(y, v, v_y, v_z, v_{yy}, v_{yz}, v_{zz}) = 0 \quad (\widetilde{F}_z = XF = 0)$ is the invariantized PDE solution family satisfies $\tilde{F}(y, v, v_x, v_z, v_{yy}, v_{zz}, v_{zz}) = 0$

KORKAR KERKER E VOOR

Example Continued

The "invariantized" heat equation becomes

$$
0 = v_{zz} + 4yv_{yz} + \left(m - 1 - \frac{4}{p}\right)v_z
$$

+4y²v_{yy} + y\left(y - \frac{8}{p} + 2(m + 1)\right)v_y
+ \frac{2}{p}\left(1 + \frac{2}{p} - m\right)v + kv^{p+1} (1)

Any solution $v = v(z, y)$ gives a solution $u = x^{-2/p}v(\ln x + c_1, x^2/t).$

Example Continued

The "invariantized" heat equation becomes

$$
0 = v_{zz} + 4yv_{yz} + \left(m - 1 - \frac{4}{p}\right)v_z
$$

+4y²v_{yy} + y\left(y - \frac{8}{p} + 2(m + 1)\right)v_y
+ \frac{2}{p}\left(1 + \frac{2}{p} - m\right)v + kv^{p+1} (1)

Any solution $v = v(z, y)$ gives a solution $u = x^{-2/p}v(\ln x + c_1, x^2/t).$

The method of symmetry reduction (of the number of variables) assumes $v_z = 0$. What remains of [\(1\)](#page-41-0) has no point symmetries according to LIEPDE and no first integrals according to CONLAW.

 \Rightarrow Classical symmetry method reaches a dead end!

Step 3: Adapt Variables to Orbits of Symmetry Group

along orbit
$$
v = v(z + \tilde{c}_1, y)
$$

 \Rightarrow *z* = *Z*(*y*, *v*) – \tilde{c}_1 by implicit function theorem

⇒ use *y*, *v* (invariants of X) as independent variables and use differential invariants of pr X as dependent variables

$$
V_Z|_{\text{orbit}} = V_Z|_{Z=Z-\tilde{C}_1} =: \begin{bmatrix} 1.0(y, v) \\ V_y|_{\text{orbit}} \end{bmatrix} = V_y|_{Z=Z-\tilde{C}_1} =: \begin{bmatrix} 1.0(y, v) \\ 0.1(y, v) \end{bmatrix} 1^{\text{st}} \text{order}
$$

$$
V_{ZZ}|_{\text{orbit}} = V_{ZZ}|_{Z=Z-\tilde{c}_1} =: \Gamma^{2,0}(y, v)
$$

\n
$$
V_{ZY}|_{\text{orbit}} = V_{ZY}|_{Z=Z-\tilde{c}_1} =: \Gamma^{1,1}(y, v)
$$

\n
$$
V_{yy}|_{\text{orbit}} = V_{yy}|_{Z=Z-\tilde{c}_1} =: \Gamma^{0,2}(y, v)
$$

etc.

relations between 1st order Γ's and 2nd order Γ's:

$$
(v_z)_z = v_{zz}, (v_y)_y = v_{yy}, (v_y)_z = (v_z)_y
$$

KORKAR KERKER E VOOR

are called *syzygys*

Computation of Syzygys

$$
D_z = \text{pr } \partial_z = \partial_z + v_z \partial_v + v_{zz} \partial_{v_z} + v_{zy} \partial_{v_y} + \dots \text{ (produces)}
$$

\n
$$
D_y = \text{pr } \partial_y = \partial_y + v_y \partial_v + v_{zy} \partial_{v_z} + v_{yy} \partial_{v_y} + \dots \text{ (to J)} \text{ (to J)}
$$

Computation of Syzygys

$$
D_z = \text{pr } \partial_z = \partial_z + v_z \partial_v + v_{zz} \partial_{v_z} + v_{zy} \partial_{v_y} + \dots \}
$$
 prolongations
\n
$$
D_y = \text{pr } \partial_y = \partial_y + v_y \partial_v + v_{zy} \partial_{v_z} + v_{yy} \partial_{v_y} + \dots \}
$$
 to J^{∞}

evaluate along orbits of \mathcal{G}_1

$$
D_{z}|_{\text{orbit}} = 0 + \Gamma^{1,0}\partial_{v} + \Gamma^{2,0}\partial_{\Gamma^{1,0}} + \Gamma^{1,1}\partial_{\Gamma^{0,1}} + ... \equiv \hat{D}_{z}
$$

\n
$$
D_{y}|_{\text{orbit}} = \partial_{y} + \Gamma^{0,1}\partial_{v} + \Gamma^{1,1}\partial_{\Gamma^{1,0}} + \Gamma^{0,2}\partial_{\Gamma^{0,1}} + ... \equiv \hat{D}_{y}
$$

$$
\Rightarrow \Gamma^{2,0} = \hat{D}_z \Gamma^{1,0} = \Gamma^{1,0} \Gamma^{1,0} \nu
$$

\n
$$
\Gamma^{0,2} = \hat{D}_y \Gamma^{0,1} = \Gamma^{0,1} y + \Gamma^{0,1} \Gamma^{1,0} \nu
$$

\n
$$
\Gamma^{1,1} = \hat{D}_z \Gamma^{0,1} = \Gamma^{1,0} \Gamma^{0,1} \nu
$$

\n
$$
= \hat{D}_y \Gamma^{1,0} = \Gamma^{1,0} y + \Gamma^{0,1} \Gamma^{1,0} \nu
$$

etc.

$$
J^{\infty}|_{\text{orbit}} = (y, v, \Gamma^{1,0}, \Gamma^{0,1}, \Gamma^{2,0}, \Gamma^{1,1}, \Gamma^{0,2}, \ldots) \text{ modulo syzygys}
$$

independent variables: *y*, *v* dependent variables: Γ^{1,0}, Γ^{0,1} along orbits of G_1

syzygy relating 1st order Γ's: 0 = Γ^{1,0}y+Γ^{0,1}Γ^{1,0}v−Γ^{1,0}Γ^{0,1}ν(2)

KORK ERKER ADAM ADA

independent variables: *y*, *v* dependent variables: Γ^{1,0}, Γ^{0,1} along orbits of G_1

syzygy relating 1st order Γ's: 0 = Γ^{1,0}y+Γ^{0,1}Γ^{1,0}v−Γ^{1,0}Γ^{0,1}ν(2) invariantized PDE:

$$
0 = \tilde{F}(y, v, v_z, v_y, v_{zz}, v_{zy}, v_{yy})|_{\text{orbit}}
$$

= $\tilde{F}(y, v, \Gamma^{1,0}, \Gamma^{0,1}, \Gamma^{2,0}, \Gamma^{1,1}, \Gamma^{0,2}) \equiv \hat{F}$

KORK ERKER ADAM ADA

independent variables: *y*, *v* dependent variables: Γ^{1,0}, Γ^{0,1} along orbits of G_1

syzygy relating 1st order Γ's: 0 = Γ^{1,0}y+Γ^{0,1}Γ^{1,0}v−Γ^{1,0}Γ^{0,1}ν(2) invariantized PDE:

$$
0 = \tilde{F}(y, v, v_z, v_y, v_{zz}, v_{zy}, v_{yy})|_{orbit}
$$

= $\tilde{F}(y, v, \Gamma^{1,0}, \Gamma^{0,1}, \Gamma^{2,0}, \Gamma^{1,1}, \Gamma^{0,2}) \equiv \hat{F}$

Substitution of $\Gamma^{2,0}, \Gamma^{1,1}, \Gamma^{0,2}$ using above syzygies gives

$$
0 = \hat{F}(y, z, \Gamma^{1,0}, \Gamma^{0,1}, \Gamma^{1,0}_y, \Gamma^{0,1}_y, \Gamma^{1,0}_y, \Gamma^{0,1}_y). \tag{3}
$$

KORK ERKER ADAM ADA

independent variables: *y*, *v* dependent variables: Γ^{1,0}, Γ^{0,1} along orbits of G_1

syzygy relating 1st order Γ's: 0 = Γ^{1,0}y+Γ^{0,1}Γ^{1,0}v−Γ^{1,0}Γ^{0,1}ν(2) invariantized PDE:

$$
0 = \tilde{F}(y, v, v_z, v_y, v_{zz}, v_{zy}, v_{yy})|_{orbit}
$$

= $\tilde{F}(y, v, \Gamma^{1,0}, \Gamma^{0,1}, \Gamma^{2,0}, \Gamma^{1,1}, \Gamma^{0,2}) \equiv \hat{F}$

Substitution of $\Gamma^{2,0}, \Gamma^{1,1}, \Gamma^{0,2}$ using above syzygies gives

$$
0 = \hat{F}(y, z, \Gamma^{1,0}, \Gamma^{0,1}, \Gamma^{1,0}_y, \Gamma^{0,1}_y, \Gamma^{1,0}_y, \Gamma^{0,1}_y). \tag{3}
$$

KOD KOD KED KED E VOOR

 (2) , (3) are the group-resolving system which is a 1st order system of PDEs for Γ^{1,0}(*y*, *v*), Γ^{0,1}(*y*, *v*).

Example Continued

$$
v_{z}|_{\text{orbit}} = \Gamma^{1,0}, \dots, v_{yy}|_{\text{orbit}} = \Gamma^{0,1}y + \Gamma^{0,1}\Gamma^{1,0}v \Rightarrow
$$

\n
$$
0 = (v_{zz} + \dots + kv^{p+1})|_{\text{orbit}} \text{ (invariantized heat equation)}
$$

\n
$$
= \Gamma^{1,0}v\Gamma^{1,0} + 4y\Gamma^{0,1}v\Gamma^{1,0} + \left(m - 1 - \frac{4}{p}\right)\Gamma^{1,0}
$$

\n
$$
+ 4y^{2}(\Gamma^{0,1}y + \Gamma^{0,1}v\Gamma^{0,1} + y\left(y - \frac{8}{p} + 2(m + 1)\right)\Gamma^{0,1}
$$

\n
$$
+ \frac{2}{p}\left(1 + \frac{2}{p} - m\right)v + kv^{p+1}
$$

K ロ X x (日 X X B X X B X X B X O Q O

Example Continued

$$
v_{z}|_{\text{orbit}} = \Gamma^{1,0}, \dots, v_{yy}|_{\text{orbit}} = \Gamma^{0,1}y + \Gamma^{0,1}\Gamma^{1,0}v \Rightarrow
$$

\n
$$
0 = (v_{zz} + \dots + kv^{p+1})|_{\text{orbit}} \text{ (invariantized heat equation)}
$$

\n
$$
= \Gamma^{1,0}v\Gamma^{1,0} + 4y\Gamma^{0,1}v\Gamma^{1,0} + \left(m - 1 - \frac{4}{p}\right)\Gamma^{1,0}
$$

\n
$$
+ 4y^{2}(\Gamma^{0,1}y + \Gamma^{0,1}v\Gamma^{0,1} + y\left(y - \frac{8}{p} + 2(m + 1)\right)\Gamma^{0,1}
$$

\n
$$
+ \frac{2}{p}\left(1 + \frac{2}{p} - m\right)v + kv^{p+1}
$$

Using the syzygy

$$
\Gamma^{0,1}\Gamma^{1,0}{}_{V}-\Gamma^{1,0}\Gamma^{0,1}{}_{V}+\Gamma^{1,0}_{V}=0
$$
 (4)

KO KKO K S A B K S B K V S A V K S

the scaling group resolving system for $\Gamma^{1,0}(\gamma,\nu), \Gamma^{0,1}(\gamma,z)$ is ...

Example: Group Resolving Equations

$$
\Gamma^{0,1}\Gamma^{1,0}{}_{\nu}-\Gamma^{1,0}\Gamma^{0,1}{}_{\nu}+\Gamma^{1,0}{}_{y}=0 \qquad (5)
$$

KEL KALEY KEY E NAG

$$
-\frac{1}{2}(2y\Gamma^{0,1}-\Gamma^{1,0})(2y\Gamma^{0,1}v-\Gamma^{1,0}v)-4y^{2}\Gamma^{0,1}v+2y\Gamma^{1,0}v
$$

+
$$
\Gamma^{0,1}-(2p+m-1)\Gamma^{1,0}+(2p+m-3)2y\Gamma^{0,1}
$$

= $kv^{p+1}+p(p+m-1)v$ (6)

L.h.s. of [\(5\)](#page-52-0) has general form $\Upsilon_1(\Gamma) := \alpha_1 \Gamma \wedge \Gamma_V + \beta_1 \Gamma_V$ L.h.s. of [\(6\)](#page-52-1) has general form $\Upsilon_2(\Gamma) := \alpha_2 \Gamma \odot \Gamma_V + \beta_2 \Gamma_V + \gamma_2 \Gamma_V$ (\wedge : antisymmetric product, ⊙: symmetric product)

Step 5: After solving the System: Reconstruct the PDE Solution Families from Orbits

Let

$$
\Gamma^{1,0} = g(y, v), \quad \Gamma^{0,1} = h(y, v)
$$

KORK ERKER ADAM ADA

satisfy the group-resolving system.

Step 5: After solving the System: Reconstruct the PDE Solution Families from Orbits

Let

$$
\Gamma^{1,0} = g(y, v), \quad \Gamma^{0,1} = h(y, v)
$$

satisfy the group-resolving system.

on orbit: $v_z = g(y, v)$, $v_y = h(y, v)$ which is a pair of G_1 -invariant ODEs. invariance \Rightarrow can integrate to obtain $v(z, y)$ (up to quadrature)

KORK EXTERNED ARA

Step 5: After solving the System: Reconstruct the PDE Solution Families from Orbits

Let

$$
\Gamma^{1,0} = g(y,v), \quad \Gamma^{0,1} = h(y,v)
$$

satisfy the group-resolving system.

on orbit: $v_z = g(y, v)$, $v_y = h(y, v)$ which is a pair of G_1 -invariant ODEs. invariance \Rightarrow can integrate to obtain $v(z, y)$ (up to quadrature)

KORK EXTERNED ARA

called automorphic property

Outline

[Introduction](#page-1-0)

[Group Foliation in 5 Steps](#page-25-0)

[Solving the Group-Resolving System](#page-56-0)

[Solutions for the Nonlinear Heat Equation](#page-75-0)

The semilinear radial Schrödinger equations

[Summary](#page-126-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

$$
\blacktriangleright g=0
$$

 \Rightarrow $v_z = 0 \Rightarrow 1^\text{st}$ order ODE $v_y = h(y, v)$ for $v(y)$ (without guarantee that this ODE can be solved) any solution $v = v(y, c_1)$ is invariant w.r.t. $X = \partial_z$,

KORKARA KERKER DAGA

$$
\blacktriangleright \; g = 0
$$

 \Rightarrow $v_z = 0 \Rightarrow 1^\text{st}$ order ODE $v_y = h(y, v)$ for $v(y)$ (without guarantee that this ODE can be solved) any solution $v = v(y, c_1)$ is invariant w.r.t. $X = \partial_z$,

KORK EXTERNED ARA

change variables $(z, y, v) \rightarrow (t, x, u)$

$$
\blacktriangleright \; g = 0
$$

 \Rightarrow $v_z = 0 \Rightarrow 1^\text{st}$ order ODE $v_y = h(y, v)$ for $v(y)$ (without guarantee that this ODE can be solved) any solution $v = v(y, c_1)$ is invariant w.r.t. $X = \partial_z$,

KORK EXTERNED ARA

change variables $(z, y, v) \rightarrow (t, x, u)$

 \Rightarrow solution $u = u(t, x, c_1)$ invariant w.r.t. \mathcal{G}_1 ,

$$
\blacktriangleright \; g = 0
$$

 \Rightarrow $v_z = 0 \Rightarrow 1^\text{st}$ order ODE $v_y = h(y, v)$ for $v(y)$ (without guarantee that this ODE can be solved) any solution $v = v(y, c_1)$ is invariant w.r.t. $X = \partial_z$,

change variables $(z, y, v) \rightarrow (t, x, u)$

 \Rightarrow solution $u = u(t, x, c_1)$ invariant w.r.t. \mathcal{G}_1 ,

 \Rightarrow one-parameter family of fixed points of \mathcal{G}_1

KORKAR KERKER E VOOR

$$
\blacktriangleright g=0
$$

 \Rightarrow $v_z = 0 \Rightarrow 1^\text{st}$ order ODE $v_y = h(y, v)$ for $v(y)$ (without guarantee that this ODE can be solved) any solution $v = v(y, c_1)$ is invariant w.r.t. $X = \partial_z$,

change variables $(z, y, v) \rightarrow (t, x, u)$

 \Rightarrow solution $u = u(t, x, c_1)$ invariant w.r.t. \mathcal{G}_1 ,

 \Rightarrow one-parameter family of fixed points of \mathcal{G}_1

 \Rightarrow this case is equivalent to the symmetry method

KORKAR KERKER E VOOR

 \blacktriangleright $g \neq 0$

on orbit: $v_z = g(y, v)$, $v_y = h(y, v)$ ⇒ use hodograph transformation on *z*, *v* \Rightarrow *z*(*y*, *v*) satisfies

$$
z_v=1/g(y,v), z_y=-h(y,v)/g(y,v)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright $g \neq 0$

on orbit: $v_z = g(y, v)$, $v_y = h(y, v)$ ⇒ use hodograph transformation on *z*, *v* \Rightarrow *z*(*y*, *v*) satisfies

$$
z_v=1/g(y,v), z_y=-h(y,v)/g(y,v)
$$

solve by line integral formula

$$
z + \tilde{c}_1 = \int \frac{1}{g(y, v)} dv - \frac{h(y, v)}{g(y, v)} dy \quad \text{(path - independent)}
$$

KORKARA KERKER DAGA

 \Rightarrow implicit solution $v = v(z + \tilde{c}_1, v)$

 \blacktriangleright $g \neq 0$

on orbit: $v_z = g(y, v)$, $v_y = h(y, v)$ ⇒ use hodograph transformation on *z*, *v* \Rightarrow *z*(*y*, *v*) satisfies

$$
z_v=1/g(y,v), z_y=-h(y,v)/g(y,v)
$$

solve by line integral formula

$$
z + \tilde{c}_1 = \int \frac{1}{g(y, v)} dv - \frac{h(y, v)}{g(y, v)} dy \quad \text{(path - independent)}
$$

 \Rightarrow implicit solution $v = v(z + \tilde{c}_1, v)$

change of variables $(z, y, v) \rightarrow (t, x, u)$ \Rightarrow solution $u = u(t, x, c_1)$ closed family w.r.t. G_1 , i.e. one-dimensional orbit of G_1

Theorem

For 2 nd *order PDE*

$$
F(t, x, u, u_t, u_x, u_{tt}, u_{xx}, u_{tx}) = 0
$$

in 2 independent variables t, *x and 1 dependent variable u with one-dimensional symmetry (sub-)group* G1*, solutions of the group-resolving system*

$$
\Gamma^{1,0} = g(y,v), \quad \Gamma^{0,1} = h(y,v)
$$

are in one-to-one correspondence with one-parameter families of solutions $u = u(t, x, c_1)$ *of the PDE such that the family is closed under the action of* G_1 .

KORKARA KERKER DAGA

Theorem

For 2 nd *order PDE*

$$
F(t, x, u, u_t, u_x, u_{tt}, u_{xx}, u_{tx}) = 0
$$

in 2 independent variables t, *x and 1 dependent variable u with one-dimensional symmetry (sub-)group* G1*, solutions of the group-resolving system*

$$
\Gamma^{1,0} = g(y, v), \quad \Gamma^{0,1} = h(y, v)
$$

are in one-to-one correspondence with one-parameter families of solutions $u = u(t, x, c_1)$ *of the PDE such that the family is closed under the action of* G_1 .

This generalizes to PDEs of higher order, arbitrary # of dependent and independent variables and higher dimensional symmetry group (abelian or solvable).

How to find solutions of the group-resolving system?

 \triangleright All solutions of original PDE arise from solution space of group-resolving system (including those from symmetry reduction which compose special case).

 \Rightarrow cannot solve group-resolving system in general (unless original PDE itself can be solved)

KORK EXTERNED ARA

How to find solutions of the group-resolving system?

 \triangleright All solutions of original PDE arise from solution space of group-resolving system (including those from symmetry reduction which compose special case).

 \Rightarrow cannot solve group-resolving system in general (unless original PDE itself can be solved)

 \triangleright look for special solutions of group-resolving system \Rightarrow impose reduction ansatz or condition on system, e.g. $\Gamma^{1,0} = 0$ (1. case in reconstruction step) \Rightarrow system reduces to 1st order equation for $\mathsf{\Gamma}^{0,1}$ \Rightarrow characteristics of equation reproduce ODE for G_1 invariant solutions of original PDE

KORK ERKEY EL POLO

How to find solutions of the group-resolving system?

 \triangleright All solutions of original PDE arise from solution space of group-resolving system (including those from symmetry reduction which compose special case).

 \Rightarrow cannot solve group-resolving system in general (unless original PDE itself can be solved)

- \triangleright look for special solutions of group-resolving system \Rightarrow impose reduction ansatz or condition on system, e.g. $\Gamma^{1,0} = 0$ (1. case in reconstruction step) \Rightarrow system reduces to 1st order equation for $\mathsf{\Gamma}^{0,1}$ \Rightarrow characteristics of equation reproduce ODE for G_1 invariant solutions of original PDE
- \triangleright if original PDE has additional symmetries inherited by the group-resolving system then symmetry reduction possible \Rightarrow yields only group-invariant solutions of original PDE

Reduction Methods for Group-Resolving Systems

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright reduction under hidden symmetries

Reduction Methods for Group-Resolving Systems

- \blacktriangleright reduction under hidden symmetries
- \triangleright Bluman's nonclassical method (invariant surface condition) Clarkson's direct method and more general functional separation methods

KORK EXTERNED ARA
Reduction Methods for Group-Resolving Systems

- \blacktriangleright reduction under hidden symmetries
- \triangleright Bluman's nonclassical method (invariant surface condition) Clarkson's direct method and more general functional separation methods
- \blacktriangleright (successfully used by us:) separation ansatz tailored to certain homogeneity features of group-resolving system
	- \blacktriangleright yields explicit solutions
	- \triangleright semi-algorithmic \Rightarrow suited to computer algebra (e.g. Crack/Reduce)
	- \triangleright used for group-resolving systems coming from semilinear PDEs with power nonlinearities

KORK ERKER ADAM ADA

Example: Homogeneity Property

Ansatz $\Gamma = a(y)v + b(y)v^q$ with $q \neq 1$ gives conditions

```
q q q q q
0=a10 *v + v *b10 + v *a01*b10*q - v *a01*b10 - v *a10*b01*q + v *a10*b01
    y y
        2 q p 2 2*q 2 2 2*q
0=4*a10 *v *y + 4*v *b10 *v*y - 2*v *k*v - 4*v *b01 *q*y + 4*v *b01*b10*q*y
      y y
    2*\alpha 2 q
  -v *b10 *q - 4*v *a01*b01*(q+1)*v*y + 2*v *a01*b10*(q+1)*v*y
  q q q q
+ 2*v *a10*b01*q*v*y + 2*v *a10*b01*v*y - v *a10*b10*(q+1)*v + 4*v *b01*m*v*y
  q q q q q
+ 8*v *b01*p*v*y - 12*v *b01*v*y + 2*v *b01*v - 2*v *b10*m*v - 4*v *b10*p*v
  q 2 2 2 2 2 2
+ 2*v *b10*v - 4*a01 *v *y + 4*a01*a10*v *y + 4*a01*m*v *y + 8*a01*p*v *y
              2 2 2 2 2 2 2
  - 12*a01*v *v + 2*a01*v - a10 *v - 2*a10*mv - 4*a10*pv + 2*a10*v2 2 2 2
  + 2*m*p*v + 2*p *v - 2*p*v
```
1st condition → a10 = const + ODE $2nd$ condition has exponents v^2 , v^{q+1} , v^{2q} , v^{p+2}

Example:

 \Rightarrow 2 cases: $q = p + 1$, $q = p/2 + 1$ with each 4 conditions for 3 functions *a*01, *b*01, *b*10 and 3 constants *p*, *m*, *c*1,(*k* is a parameter), for example:

```
0=2*b10 + a01*b10*p + b01*c1*py
2 2 2 2 2 2
0=4*b01 *p*y + 8*b01 *y - 4*b01*b10*p*y - 8*b01*b10*y + b10 *p + 2*b10 + 4*k
2 2 2
0=4*a01 *y + 4*a01*c1*y - 4*a01*m*y - 8*a01*p*y + 12*a01*y - 2*a01 + c1
   2
- 2*c1*m - 4*c1*p + 2*c1 - 2*m*p - 2*p + 2*p
2 2
0=4*a01*b01*p*y + 16*a01*b01*y + 2*a01*b10*p*y - 8*a01*b10*y + 6*b01*c1*p*y
   + 8*b01*c1*y - 8*b01*m*y - 16*b01*p*y + 24*b01*y - 4*b01 - b10*c1*p
   - 4 * b10 * c1 + 4 * b10 * m + 8 * b10 * p - 4 * b10
```
To obtain all solutions one can use computer algebra packages for solving nonlinear overdetermined systems of algebraic/differential equations, e.g. the package CRACK.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Outline

[Introduction](#page-1-0)

[Group Foliation in 5 Steps](#page-25-0)

[Solving the Group-Resolving System](#page-56-0)

[Solutions for the Nonlinear Heat Equation](#page-75-0)

The semilinear radial Schrödinger equations

[Summary](#page-126-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Example: Solutions of the group resolving System I

(i)
$$
\Gamma^{0,1} = kv^{p+1}, \ \Gamma^{1,0} = \frac{2}{p}v + \frac{2k}{y}v^{p+1}
$$

(ii)
$$
\Gamma^{0,1} = 0
$$
, $\Gamma^{1,0} = \frac{2}{p}v \pm \sqrt{\frac{-2k}{p+2}}v^{1+p/2}$, $m = 0$

(iii)
$$
\Gamma^{0,1} = \pm (3-m) \sqrt{\frac{k(1-m)}{m-2}} v^{\frac{m-2}{m-1}}
$$

$$
\Gamma^{1,0} = 2(1-m)v \pm 2 \sqrt{\frac{k(1-m)}{m-2}} \left(\frac{1}{2} + \frac{3-m}{y}\right) v^{\frac{m-2}{m-1}}
$$

$$
p = \frac{2}{1-m}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Example: Solutions of the group resolving System II

(iv)
$$
\Gamma^{0,1} = 0
$$

\n
$$
\Gamma^{1,0} = \pm \sqrt{k(1-m)}v^{\frac{1}{m-1}} - \frac{(m-1)^2}{m-2}v
$$
\n
$$
p = \frac{4-2m}{m-1}
$$

(v)
$$
\Gamma^{0,1} = \frac{3}{3y+1} (v \pm \sqrt{-2k}v^2)
$$

$$
\Gamma^{1,0} = \frac{3}{2y(3y+1)} \left(\left(y^2 + \frac{5}{3}y + 4 \right) v + \sqrt{-2k} \left(y^2 + \frac{1}{3}y + 4 \right) v^2 \right)
$$

$$
p = 2, m = \frac{3}{2}
$$

KO K K Ø K K E K K E K Y S K Y K K K K K

Example: Solutions of the group resolving System III

(vi)
$$
\Gamma^{0,1} = \frac{3}{3y+1}v \pm \frac{3}{2}\sqrt{k}v^{-1}
$$

$$
\Gamma^{1,0} = \frac{3}{y(3y+1)} \left(\left(-y^2 + \frac{1}{3}y + 2 \right) v + \sqrt{k} \left(y^2 + \frac{10}{3}y + 1 \right) v^{-1} \right)
$$

$$
p = -4, \quad m = \frac{3}{2}
$$

Solutions of Nonl. Heat Eqn. $u_t = u_{xx} + \frac{m}{x}$ $\frac{m}{x}$ *u*_{*x*} + *ku*^{*p*+1}

(i)
$$
u = (-kp(t + c_1))^{-1/p}
$$

invariant under scaling symmetry and time-translation $X= 2(t+c_1)\partial_t + x\partial_x - \frac{2}{\rho}$ *p u*∂*^u*

(ii)
$$
u = x^{-2/p} \left(\pm \frac{p}{2} \sqrt{\frac{-2k}{p+2}} \ln x + c_1 \right)^{-2/p}, \quad m = 0
$$

KID K@ KKEX KEX E 1090

non-invariant w.r.t. X= $a\partial_t + b(2t\partial_t + x\partial_x - \frac{2}{\rho})$ *p u*∂*u*)

(iii)
$$
u = \left(\pm \sqrt{\frac{-k}{(m-1)(m-3)}} \left(\frac{x}{2} - (m-3)\frac{t+c_1}{x}\right)\right)^{m-1}
$$

 $q = \frac{3}{1-m}, \ m \neq 1$

- ► invariant w.r.t. $X = 2(t + c_1)\partial_t + x\partial_x \frac{2}{\rho}$ *p u*∂*^u* scaling+time-translation
- \triangleright one-dimensional orbit of scaling group

$$
(t\to e^{2\epsilon},\ x\to e^\epsilon x,\ u\to e^{-2\epsilon/q}u)\Rightarrow (c_1\to \tilde c_1=e^{-\epsilon}c_1)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

 $(\varepsilon =$ group parameter)

(iv)
$$
u = \left(\pm \sqrt{\frac{1-m}{k}} \left(c_1 x^{3-m} - x\right)\right)^{\frac{m-1}{m-2}},
$$

 $p = \frac{4-2m}{m-1}$

KO K K Ø K K E K K E K Y S K Y K K K K K

non-invariant w.r.t. X= $a\partial_t + b(2t\partial_t + x\partial_x - \frac{2}{\rho})$ *p u*∂*u*)

(v)
$$
u = \pm \frac{5}{\sqrt{-2k}} \frac{3t + x^2}{x(15t + x^2) + c_1x^{1/2}}, \quad q = 2, \quad m = 3/2
$$

- **►** non-invariant w.r.t. $X = a\partial_t + b(2t\partial_t + x\partial_x u\partial_u)$
- \triangleright one-dimensional orbit of scaling group

$$
(t \to e^{2\epsilon}, \ x \to e^{\epsilon}x, \ u \to e^{-\epsilon}u) \Rightarrow (c_1 \to \tilde{c}_1 = e^{-1/2\epsilon}c_1)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

(vi)
$$
u = \left(\pm\sqrt{k}(1+c_1(3t+x^2))\left(\frac{3t}{x}+x\right)\right)^{1/2}, \quad q=-4, m=3/2.
$$

- ► non-invariant w.r.t. $X = a\partial_t + b(2t\partial_t + x\partial_x + \frac{1}{2})$ $\frac{1}{2}$ *u*∂_{*u*})
- \triangleright one-dimensional orbit of scaling group

$$
(t\to e^{2\epsilon}t,\ x\to e^{\epsilon}x,\ u\to e^{\epsilon/2}u)\Rightarrow (c_1\to \tilde c_1=e^{2\epsilon}c_1)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Outline

[Introduction](#page-1-0)

[Group Foliation in 5 Steps](#page-25-0)

[Solving the Group-Resolving System](#page-56-0)

[Solutions for the Nonlinear Heat Equation](#page-75-0)

The semilinear radial Schrödinger equations

[Summary](#page-126-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

$$
i u_t = u_{rr} + m u_r/r + k|u|^p u, \quad p \neq 0, \quad k \neq 0 \tag{7}
$$

K ロ X x (日 X X B X X B X X B X O Q O

for $u(t, r)$, and p, m constant.

$$
i u_t = u_{rr} + m u_r/r + k|u|^p u, \quad p \neq 0, \quad k \neq 0 \tag{7}
$$

KORK ERKER ADAM ADA

for $u(t, r)$, and p, m constant.

 \blacktriangleright $m > 0 \in \mathbb{N}$: model for slow modulation of radial waves in a weakly nonlinear, dispersive, isotropic medium in $m + 1$ dimensions (Sulem, Sulem)

$$
i u_t = u_{rr} + m u_r/r + k|u|^p u, \quad p \neq 0, \quad k \neq 0 \tag{7}
$$

KORKARA KERKER DAGA

for $u(t, r)$, and p, m constant.

- \blacktriangleright $m > 0 \in \mathbb{N}$: model for slow modulation of radial waves in a weakly nonlinear, dispersive, isotropic medium in $m + 1$ dimensions (Sulem, Sulem)
- \blacktriangleright $m = 0$: same, only *r* is the full-line coordinate

$$
i u_t = u_{rr} + m u_r/r + k|u|^p u, \quad p \neq 0, \quad k \neq 0 \tag{7}
$$

for $u(t, r)$, and p, m constant.

- \blacktriangleright $m > 0 \in \mathbb{N}$: model for slow modulation of radial waves in a weakly nonlinear, dispersive, isotropic medium in $m + 1$ dimensions (Sulem, Sulem)
- \blacktriangleright $m = 0$: same, only *r* is the full-line coordinate
- \triangleright otherwise can be interpreted as slow modulation of two-dimensional radial waves in a planar, weakly nonlinear, dispersive medium containing a point-source disturbance at the origin, with modulation term $(m - 1)u_r/r$.

KORKAR KERKER E VOOR

Point Symmetries

time translation $\mathbf{X}_{trans} = \partial_t$ phase rotation $\mathbf{X}_{\text{phas.}} = i\mu\partial_\mu - i\bar{\mu}\partial_{\bar{\mu}}$ $X_{\text{scal.}} = 2t\partial_t + r\partial_r - (2/p)u\partial_u - (2/p)\overline{u}\partial_{\overline{u}}$ $X_{\text{inver}} = t^2 \partial_t + tr \partial_r - (2t/p + ir^2/4)u \partial_u$ $-(2t/p - i r^2/4) \bar{u} \partial_{\bar{u}}$ (only for $p = 4/n$)

where **X** is the infinitesimal generator of a one-dimensional group of point transformations acting on (t, r, u, \bar{u}) . The inversion is called a pseudo-conformal transformation, and the special power for which it exists is commonly called the critical power.

KORKAR KERKER E VOOR

Symmetry Groups

On solutions $u = f(t, r)$ of the radial NLS equation [\(7\)](#page-85-0), the one-dimensional symmetry groups arising from the 4 generators are given by

$$
u = f(t - \epsilon, r),
$$

\n
$$
u = \exp(i\phi)f(t, r),
$$

\n
$$
u = \lambda^{-2/p}f(\lambda^{-2}t, \lambda^{-1}r),
$$

\n
$$
u = (1 + \epsilon t)^{-2/p} \exp\left(-\frac{i\epsilon r^2}{4 + 4\epsilon t}\right) f\left(\frac{t}{1 + \epsilon t}, \frac{r}{1 + \epsilon t}\right), \quad \rho = \frac{4}{n},
$$

with group parameters $-\infty < \epsilon < \infty$, $0 < \lambda < \infty$, $0 \le \phi < 2\pi$.

KORKARYKERKE PORCH

Resulting ODEs

Examples: For $p = 4/n > 0$ ("critical case"), blow-up solutions

 $u(t, r) = (T - t)^{-n/2} U(\xi) \exp(i(\omega + r^2/4)/(T - t)), \xi = r/(T - t),$

are invariant under a certain pseudo-conformal subgroup in the full symmetry group, where $U(\xi)$ satisfies the complex ODE

$$
U'' + (n-1)\xi^{-1}U' + \omega U + k|U|^{4/n}U = 0.
$$

KORKAR KERKER E VOOR

Resulting ODEs

Examples: For $p = 4/n > 0$ ("critical case"), blow-up solutions

 $u(t, r) = (T - t)^{-n/2} U(\xi) \exp(i(\omega + r^2/4)/(T - t)), \xi = r/(T - t),$

are invariant under a certain pseudo-conformal subgroup in the full symmetry group, where $U(\xi)$ satisfies the complex ODE

$$
U'' + (n-1)\xi^{-1}U' + \omega U + k|U|^{4/n}U = 0.
$$

For $p > 4/n > 0$ ("super critical case") a general class of blow-up solutions is believed to asymptotically approach

$$
u(t,r)=(T-t)^{-1/p}U(\xi)\exp(i\omega\ln((T-t)/T)),\ \xi=r/\sqrt{T-t},
$$

which is invariant under a certain scaling subgroup in the full symmetry group of [\(7\)](#page-85-0), where $U(\xi)$ satisfies the complex ODE

$$
U'' + ((n-1)\xi^{-1} - \frac{1}{2}i\xi)U' - (\omega + i/p)U + k|U|^p U = 0.
$$

Resulting ODEs

Examples: For $p = 4/n > 0$ ("critical case"), blow-up solutions

 $u(t, r) = (T - t)^{-n/2} U(\xi) \exp(i(\omega + r^2/4)/(T - t)), \xi = r/(T - t),$

are invariant under a certain pseudo-conformal subgroup in the full symmetry group, where $U(\xi)$ satisfies the complex ODE

$$
U'' + (n-1)\xi^{-1}U' + \omega U + k|U|^{4/n}U = 0.
$$

For $p > 4/n > 0$ ("super critical case") a general class of blow-up solutions is believed to asymptotically approach

$$
u(t,r)=(T-t)^{-1/p}U(\xi)\exp(i\omega\ln((T-t)/T)),\ \xi=r/\sqrt{T-t},
$$

which is invariant under a certain scaling subgroup in the full symmetry group of [\(7\)](#page-85-0), where $U(\xi)$ satisfies the complex ODE

$$
U'' + ((n-1)\xi^{-1} - \frac{1}{2}i\xi)U' - (\omega + i/p)U + k|U|^p U = 0.
$$

KID K@ KKEX KEX E 1090

Both ODEs are intractable.

Obvious invariants: $x = r$, $v = u$ satisfy $\mathbf{X}_{trans} \{x, v, \overline{v}\} = 0$ and \mathbf{X}_{phas} , $x = 0$, \mathbf{X}_{phas} , $v = i v$, \mathbf{X}_{phas} , $\bar{v} = -i \bar{v}$.

KORKARYKERKE PORCH

Obvious invariants: $x = r$, $v = u$ satisfy $\mathbf{X}_{trans} \{x, v, \overline{v}\} = 0$ and \mathbf{X}_{phas} , $x = 0$, \mathbf{X}_{phas} , $v = i v$, \mathbf{X}_{phas} , $\bar{v} = -i \bar{v}$.

KORKAR KERKER E VOOR

Obvious differential invariants: $G = u_t, H = u_r$ satisfy $\mathbf{X}_{\text{trans.}}^{(1)} G = \mathbf{X}_{\text{trans.}}^{(1)} H = 0 \text{ and } \mathbf{X}_{\text{phas.}}^{(1)} G = iG, \mathbf{X}_{\text{phas.}}^{(1)} H = iH,$ where $\mathsf{X}_{\text{trar}}^{(1)}$ $_{\rm trans.}^{(1)}, \; \mathbf{X}_{\rm pha}^{(1)}$ $\mathcal{L}_{\text{phas}}^{(1)}$ are first-order prolongations.

Obvious invariants: $x = r$, $v = u$ satisfy $\mathbf{X}_{trans} \{x, v, \overline{v}\} = 0$ and \mathbf{X}_{phas} , $x = 0$, \mathbf{X}_{phas} , $v = i v$, \mathbf{X}_{phas} , $\bar{v} = -i \bar{v}$.

Obvious differential invariants: $G = u_t, H = u_r$ satisfy $\mathbf{X}_{\text{trans.}}^{(1)} G = \mathbf{X}_{\text{trans.}}^{(1)} H = 0 \text{ and } \mathbf{X}_{\text{phas.}}^{(1)} G = iG, \mathbf{X}_{\text{phas.}}^{(1)} H = iH,$ where $\mathsf{X}_{\text{trar}}^{(1)}$ $_{\rm trans.}^{(1)}, \; \mathbf{X}_{\rm pha}^{(1)}$ $\mathcal{L}_{\text{phas}}^{(1)}$ are first-order prolongations.

 x, v, \bar{v} are mutually independent, *G*, *H* are related by $D_r G = D_t H$ and the radial NLS equation

$$
iG - r^{1-n}D_r(r^{n-1}H) = kv^{1+p/2}\bar{v}^{p/2}.
$$

KORK ERKEY EL POLO

Obvious invariants: $x = r$, $v = u$ satisfy $\mathbf{X}_{trans} \{x, v, \overline{v}\} = 0$ and \mathbf{X}_{hhas} $\mathbf{x} = 0$, \mathbf{X}_{hhas} $\mathbf{v} = i\mathbf{v}$, \mathbf{X}_{hhas} $\bar{\mathbf{v}} = -i\bar{\mathbf{v}}$.

Obvious differential invariants: $G = u_t, H = u_r$ satisfy $\mathbf{X}_{\text{trans.}}^{(1)} G = \mathbf{X}_{\text{trans.}}^{(1)} H = 0 \text{ and } \mathbf{X}_{\text{phas.}}^{(1)} G = iG, \mathbf{X}_{\text{phas.}}^{(1)} H = iH,$ where $\mathsf{X}_{\text{trar}}^{(1)}$ $_{\rm trans.}^{(1)}, \; \mathbf{X}_{\rm pha}^{(1)}$ $\mathcal{L}_{\text{phas}}^{(1)}$ are first-order prolongations.

 x, v, \bar{v} are mutually independent, *G*, *H* are related by $D_rG = D_tH$ and the radial NLS equation

$$
iG - r^{1-n}D_r(r^{n-1}H) = kv^{1+p/2}\bar{v}^{p/2}.
$$

To summarize, $G = G(x, v, \overline{v})$, $H = H(x, v, \overline{v})$ satisfy

$$
G_x + HG_v - GH_v + \bar{H}G_{\bar{v}} - \bar{G}H_{\bar{v}} = 0
$$

if $G - (n - 1)H/x - H_x - HH_v - \bar{H}H_{\bar{v}} = kv^{1 + p/2}\bar{v}^{p/2}$

what we call the *time-translation-group resolving system*.

Lemma

Phase-equivariant solutions $G = g(x, |v|)v$ *,* $H = h(x, |v|)v$ *of the time-translation-group resolving system are in one-to-one correspondence with two-parameter families of solutions* $u = u(t, r, c_1)$ exp(i*c*₂) *of the radial NLS equation satisfying the time-translation invariance property*

$$
u(t+\epsilon, r, c_1) = u(t, r, \tilde{c}_1(\epsilon, c_1)) \exp(i\tilde{c}_2(\epsilon, c_2))
$$
 (8)

(in terms of group parameter ϵ) with $\tilde{c}_1(0, c_1) = c_1$ *and* $\tilde{c}_2(0, c_2) = 0$, where c_1, c_2 *are the constants of integration of the pair of parametric first-order ODEs*

$$
u_r = h(r, u, \bar{u}), \quad u_t = g(r, u, \bar{u})
$$

which are invariant under X_{trans} and X_{phas.}.

Lemma

There is a one-to-one correspondence between two-parameter families of static solutions $u = f(r, c_1)$ *exp(ic₂) <i>of the radial NLS equation* [\(7\)](#page-85-0) *and solutions of the time-translation-group resolving system that satisfy condition* $G = 0$ *.*

KORK ERKER ADAM ADA

A Homogeneity Observation

The group-resolving systems for $G = G(x, v, \bar{v})$, $H = H(x, v, \bar{v})$ have the structure

$$
\binom{\Upsilon_1(G,H)}{G+\Upsilon_2(H)}=\binom{0}{-ikv^{1+p/2}\bar{v}^{p/2}}
$$

where Υ_1 and Υ_2 are quadratic nonlinear 1st-order differential operators

KORK ERKER ADAM ADA

A Homogeneity Observation

The group-resolving systems for $G = G(x, v, \bar{v})$, $H = H(x, v, \bar{v})$ have the structure

$$
\begin{pmatrix} \Upsilon_1(G,H) \\ G + \Upsilon_2(H) \end{pmatrix} = \begin{pmatrix} 0 \\ -\mathrm{i} k v^{1+\rho/2} \bar{v}^{\rho/2} \end{pmatrix}
$$

where Υ_1 and Υ_2 are quadratic nonlinear 1st-order differential operators which obey the homogeneity properties:

$$
\begin{aligned} \Upsilon_1(\alpha v + \beta v^b \bar{v}^a, \gamma v + \lambda v^b \bar{v}^a) &= \nu v + \mu v^b \bar{v}^a \\ \Upsilon_2(\gamma v + \lambda v^b \bar{v}^a) &= \nu v + \mu v^b \bar{v}^a + \epsilon v^{2b-1} \bar{v}^{2a} + \kappa v^{a+b} \bar{v}^{a+b-1} \end{aligned}
$$

KORKARA KERKER DAGA

with α , β , ϵ , κ , λ , ν , μ denoting functions only of x.

A Homogeneity Observation

The group-resolving systems for $G = G(x, v, \bar{v})$, $H = H(x, v, \bar{v})$ have the structure

$$
\begin{pmatrix} \Upsilon_1(G,H) \\ G + \Upsilon_2(H) \end{pmatrix} = \begin{pmatrix} 0 \\ -\mathrm{i} k v^{1+\rho/2} \bar{v}^{\rho/2} \end{pmatrix}
$$

where Υ_1 and Υ_2 are quadratic nonlinear 1st-order differential operators which obey the homogeneity properties:

$$
\begin{aligned} \Upsilon_1(\alpha v + \beta v^b \bar{v}^a, \gamma v + \lambda v^b \bar{v}^a) &= \nu v + \mu v^b \bar{v}^a \\ \Upsilon_2(\gamma v + \lambda v^b \bar{v}^a) &= \nu v + \mu v^b \bar{v}^a + \epsilon v^{2b-1} \bar{v}^{2a} + \kappa v^{a+b} \bar{v}^{a+b-1} \end{aligned}
$$

with α , β , ϵ , κ , λ , ν , μ denoting functions only of x. Additionally, these operators have the phase invariance properties:

$$
\mathbf{X}_{\text{phas.}} \Upsilon_1(\nu^{a+1} \bar{\nu}^a, \nu^{b+1} \bar{\nu}^b) = i \Upsilon_1(\nu^{a+1} \bar{\nu}^a, \nu^{b+1} \bar{\nu}^b) \mathbf{X}_{\text{phas.}} \Upsilon_2(\nu^{b+1} \bar{\nu}^b) = i \Upsilon_2(\nu^{b+1} \bar{\nu}^b)
$$

KORK ERKER ADAM ADA

Ansatz

Based on these homogeneity and phase invariance properties the group-resolving system should have solutions of form

$$
H = (h_1(x) + h_2(x)|v|^{2a})v,
$$

\n
$$
G = -\Upsilon_2 ((h_1(x) + h_2(x)|v|^{2a})v) - ikv|v|^p,
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

 $a \neq 0$, satisfying $\mathbf{X}_{\text{phas}}^{(1)}$, $H = iH$ and $\mathbf{X}_{\text{phas}}^{(1)}$, $G = iG$.

Ansatz

Based on these homogeneity and phase invariance properties the group-resolving system should have solutions of form

$$
H = (h_1(x) + h_2(x)|v|^{2a})v,
$$

\n
$$
G = -\Upsilon_2 ((h_1(x) + h_2(x)|v|^{2a})v) - ikv|v|^p,
$$

$$
a \neq 0, \text{ satisfying } \mathbf{X}_{\text{phas}}^{(1)}, H = \mathrm{i}H \text{ and } \mathbf{X}_{\text{phas}}^{(1)}, G = \mathrm{i}G.
$$

In particular, the homogeneity properties show that the *v* term in *H* will produce terms in $\Upsilon_1(G, H)$ and $\Upsilon_2(H)$ that contain the same powers *v*, *v*|*v*| ²*^a* already appearing in *H* and *G*.

KORKAR KERKER E VOOR

Splitting

Substitution of the ansatz in the group-resolving system gives one equation with monomial powers

KO K K Ø K K E K K E K Y S K Y K K K K K

$$
v, \quad v|v|^{2a}, \quad v|v|^{4a}, \quad v|v|^{6a}, \quad v|v|^{p}, \quad v|v|^{p+2a}.
$$

Splitting

Substitution of the ansatz in the group-resolving system gives one equation with monomial powers

$$
v, \quad v|v|^{2a}, \quad v|v|^{4a}, \quad v|v|^{6a}, \quad v|v|^{p}, \quad v|v|^{p+2a}.
$$

Splitting is performed for each one of the automatically generated possible pairings of exponents, like $p = 2a \neq 0$)

KORK ERKER ADAM ADA

Splitting

Substitution of the ansatz in the group-resolving system gives one equation with monomial powers

v, *v*|*v*|^{2*a*}, *v*|*v*|^{4*a*}, *v*|*v*|^{6*a*}, *v*|*v*|^{*p*}, *v*|*v*|^{*p*+2*a*}.

Splitting is performed for each one of the automatically generated possible pairings of exponents, like $p = 2a \neq 0$)

Each splitting results in an overdetermined differential system for 2 complex (= 4 real) functions of *x* and constants *a*, *p*, *m*.

KORK ERKEY EL POLO
Solution of Overdetermined Systems I

Computer algebra package / system: CRACK / REDUCE

Methods: computation of differential Gröbner basis, integrations, splittings, maintaining list of inequalities, > 80 modules, link to external packages SINGULAR and DIFFELIM allows different levels of automation

Problems: increasing length of equations and large number of cases and sub*ⁿ* -cases

.
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

Unorthodox measures:

 \triangleright not aiming at eliminating functions to be able to split wrt. *x* but to eliminate *x* earlier and to split wrt. one *x*-dependent function,

KOD KOD KED KED E VAN

Unorthodox measures:

- \triangleright not aiming at eliminating functions to be able to split wrt. *x* but to eliminate *x* earlier and to split wrt. one *x*-dependent function,
- \blacktriangleright reducing the number of different *x*-dependent functions including *x* itself by creating homogeneous equations through
	- introducing new functions, e.g. $h_3(x) := xh_2(x)$ for which some equations become *x*-free
	- \triangleright combining equations to eliminate inhomogeneous terms

with the effect of eliminating *x* automatically when eliminating the functions so that finally one *x*-dependent function less needs to be eliminated before splitting wrt. the last *x*-dependent function becomes possible

Unorthodox measures:

- \triangleright not aiming at eliminating functions to be able to split wrt. *x* but to eliminate *x* earlier and to split wrt. one *x*-dependent function,
- \blacktriangleright reducing the number of different *x*-dependent functions including *x* itself by creating homogeneous equations through
	- introducing new functions, e.g. $h_3(x) := xh_2(x)$ for which some equations become *x*-free
	- \triangleright combining equations to eliminate inhomogeneous terms

with the effect of eliminating *x* automatically when eliminating the functions so that finally one *x*-dependent function less needs to be eliminated before splitting wrt. the last *x*-dependent function becomes possible

 \triangleright to work at first only with a subset of equations that are homogeneous in some sense,

More unorthodox measures:

 \triangleright to give the reduction of non-linearity a higher weight than the reduction of differential order

KORKARA KERKER DAGA

More unorthodox measures:

 \triangleright to give the reduction of non-linearity a higher weight than the reduction of differential order

KORK ERKER ADAM ADA

 \triangleright to try integrating equations and by that reducing the number of terms and lowering the differential order resulting in fewer steps in the decoupling process, reducing the length explosion later on

More unorthodox measures:

- \triangleright to give the reduction of non-linearity a higher weight than the reduction of differential order
- \triangleright to try integrating equations and by that reducing the number of terms and lowering the differential order resulting in fewer steps in the decoupling process, reducing the length explosion later on
- \triangleright after the final splitting large polynomial systems for unknown constants remain to be solved, use the package SINGULAR or resultant computing techniques both applicable from within the package CRACK.

KORK ERKEY EL POLO

Results for the Time+Phase-Translation-Group Resolving System

Solutions exist only in the cases $a = p/2$, $a = p/4$, and $a = 1/n$. For $p \neq 0$ and $n \neq 1$, these solutions are given by:

$$
h_1=h_2=0
$$

$$
h_1 = \text{Re } h_2 = 0, \quad (x^{-1}h_2)' = 0, \quad a = 1/n, \quad n \neq 0
$$

 $h_1 = (2 - n)x^{-1}$, Re $h_2 = 0$, $h_2^2 = 2k(2 - n)/n$, $a = p/4$, $p = 2/(2 - n)$, $n \neq 2$

$$
h_1 = (2 - n)x^{-1}
$$
, Re $h_2 = 0$, $h_2^2 = -k$,
 $a = p/4$, $p = 2(3 - n)/(n - 2)$, $n \neq 2, 3$

KORK ERKER ADAM ADA

Results continued

$$
h_1 = (2 - n)x^{-1}, \quad \text{Im } h_2 = 0, \quad h_2^2 = (2 - n)k,
$$

\n
$$
a = p/4, \quad p = 2(3 - n)/(n - 2), \quad n \neq 2, 3
$$

\n
$$
h_1 = \text{Im } h_2 = 0, \quad h'_2 + (n - 1)x^{-1}h_2 + k = 0,
$$

\n
$$
a = -1/2, \quad p = -1
$$

\n
$$
\text{Im } h_1 = \text{Im } h_2 = 0, \quad h'_1 + h_1^2 + (n - 1)x^{-1}h_1 = 0,
$$

\n
$$
h'_2 + (h_1 + (n - 1)x^{-1})h_2 + k = 0, \quad a = -1/2, \quad p = -1
$$

\n
$$
\text{Im } h_1 = \text{Im } h_2 = 0, \quad x^2h''_1 + (2x^2h_1 + (n - 1)x)h'_1 - (n - 1)h_1 = 0,
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

 $h'_2 + (h_1 + (n-1)x^{-1})h_2 + k = 0$, $a = -1/2$, $p = -1$

The Solutions for *H* and *G*

For $p \neq 0$ and $n \neq 1$, the earlier ansatz yields the following solutions of the time-translation-group resolving system:

$$
H = 0, G = -ikv^{1+p/2}\bar{v}^{p/2}
$$

\n
$$
H = iC_1xv^{1+1/n}\bar{v}^{1/n},
$$

\n
$$
G = iC_1^2x^2v^{1+2/n}\bar{v}^{2/n} + C_1nv^{1+1/n}\bar{v}^{1/n} - ikv^{1+p/2}\bar{v}^{p/2},
$$

\n
$$
n \neq 0, C_1 \neq 0
$$

\n
$$
H = (2-n)x^{-1}v \pm i\sqrt{2k(1-2/n)}v^{(5-2n)/(4-2n)}\bar{v}^{1/(4-2n)},
$$

\n
$$
G = \pm(4-n)\sqrt{2k(1-2/n)}x^{-1}v^{(5-2n)/(4-2n)}\bar{v}^{1/(4-2n)}
$$

\n
$$
+ik(1-4/n)v^{(3-n)/(2-n)}\bar{v}^{1/(2-n)},
$$

\n
$$
p = 2/(2-n), k(1-2/n) > 0, n \neq 2
$$

\n
$$
H = (2-n)x^{-1}v \pm i\sqrt{k}v^{(n-1)/(2n-4)}\bar{v}^{(3-n)/(2n-4)},
$$

\n
$$
G = 0, p = 2(3-n)/(n-2), k > 0, n \neq 2, 3
$$

\n
$$
H = (2-n)x^{-1}v \mp \sqrt{(2-n)k}v^{(1-n)/(4-2n)}\bar{v}^{(n-3)/(4-2n)},
$$

\n
$$
G = 0, p = 2(3-n)/(n-2), k(2-n) > 0, n \neq 2, 3
$$

 $2Q$

More Solutions for *H* and *G*

$$
H = \left(-(k/n)x + C_1x^{1-n} \right) v^{1/2} \overline{v}^{-1/2}, \quad G = 0, p = -1, n \neq 0
$$

\n
$$
H = x(C_1 - k \ln x) v^{1/2} \overline{v}^{-1/2}, \quad G = 0, p = -1, n = 0
$$

\n
$$
H = (2 - n)(x + C_1x^{n-1})^{-1} (v + (C_2 + (k/(2n))x^2)v^{1/2} \overline{v}^{-1/2})
$$

\n
$$
-(k/n)x v^{1/2} \overline{v}^{-1/2}, \quad G = 0, p = -1, n \neq 0, 2
$$

\n
$$
H = x(x^2 + C_1)^{-1} (2v - (kC_1 \ln x + C_2)) v^{1/2} \overline{v}^{-1/2})
$$

\n
$$
-(k/2)x v^{1/2} \overline{v}^{-1/2}, \quad G = 0, p = -1, n = 0
$$

\n
$$
H = (\ln x + C_1)^{-1} x^{-1} (v + (C_2 + (k/4)x^2) v^{1/2} \overline{v}^{-1/2})
$$

\n
$$
-(k/2)x v^{1/2} \overline{v}^{-1/2}, \quad G = 0
$$

\n
$$
p = -1, n = 2
$$

More Solutions for *H* and *G*

$$
H = \pm \sqrt{C_1} \left(C_2 J_{|1 - n/2|}(\sqrt{C_1} x) + C_3 Y_{|1 - n/2|}(\sqrt{C_1} x) \right)^{-1} \times
$$

\n
$$
\left((C_2 J_{\mp n/2}(\sqrt{C_1} x) + C_3 Y_{\mp n/2}(\sqrt{C_1} x)) \times
$$

\n
$$
(v + (k/C_1)v^{1/2}\bar{v}^{-1/2}) + C_4 x^{-n/2} v^{1/2} \bar{v}^{-1/2} \right)
$$

\n
$$
G = iC_1 v, \quad p = -1, \quad \pm (1 - n/2) \ge 0, \quad C_1 > 0
$$

\n
$$
H = \sqrt{C_1} \left(C_2 I_{|1 - n/2|}(\sqrt{C_1} x) + C_3 e^{i\pi |1 - n/2|} K_{|1 - n/2|}(\sqrt{C_1} x) \right)^{-1} \times
$$

\n
$$
\left((C_2 I_{\mp n/2}(\sqrt{C_1} x) + C_3 e^{\mp i\pi n/2} K_{\mp n/2}(\sqrt{C_1} x)) \times
$$

\n
$$
(v - (k/C_1)v^{1/2}\bar{v}^{-1/2}) + C_4 x^{-n/2} v^{1/2} \bar{v}^{-1/2} \right)
$$

\n
$$
G = -iC_1 v, \quad p = -1, \quad \pm (1 - n/2) \ge 0, \quad C_1 > 0
$$

The radial NLS equation has the following exact solutions arising from the explicit solutions of the time+phase-translation group resolving systems for $n \neq 1$:

$$
u = (c_2/k)^{1/p} \exp(ic_1 - ic_2t)
$$

\n
$$
u = (c_2 + c_3t)^{-n/2} \exp\left(ic_1 - \frac{ic_3r^2}{4(c_2 + c_3t)} + \frac{2ik}{c_3(np - 2)}(c_2 + c_3t)^{1 - np/2}\right),
$$

\n
$$
p \neq 2/n, \quad n \neq 0, \quad c_3 \neq 0
$$

\n
$$
u = (c_2 + c_3t)^{-n/2} \exp\left(ic_1 - \frac{ic_3r^2}{4(c_2 + c_3t)} - \frac{ik}{c_3}\ln|c_2 + c_3t|\right),
$$

\n
$$
p = 2/n, \quad n \neq 0, \quad c_3 \neq 0
$$

KOD KOD KED KED E VAN

$$
u = (\pm \sqrt{n(n-2)/(2k)})^{2-n} ((c_2 + (n-4)t)/r)^{n-2}
$$

\n
$$
exp (ic_1 + i(1 - n/2)r^2/(c_2 + (n-4)t)),
$$

\n
$$
p = 2/(2 - n), \quad n(n-2)/k > 0, \quad n \neq 2
$$

\n
$$
u = (k(n-3)^2/(2 - n)^3)^{(2-n)/(6-2n)} (r + c_2r^{3-n})^{(2-n)/(3-n)} \times
$$

\n
$$
exp(ic_1), \quad p = 2(3 - n)/(n-2), \quad k(2 - n) > 0, \quad n \neq 2, 3
$$

\n
$$
u = (c_2^2(n-2)^2/k)^{(n-2)/(6-2n)} r^{2-n} \times
$$

\n
$$
exp(ic_1 + ic_2r^{n-2}),
$$

\n
$$
p = 2(3 - n)/(n-2), \quad k > 0, \quad n \neq 2, 3, \quad c_2 \neq 0
$$

$$
u = \left(-k/c_6 + r^{1-n/2} (c_2J_{|1-n/2|}(\sqrt{c_6}r) + c_3Y_{|1-n/2|}(\sqrt{c_6}r)) \times \right.
$$

\n
$$
\left(1 + c_5 \int_{c_4}^r z^{-1} (c_2J_{|1-n/2|}(\sqrt{c_6}z) + c_3Y_{|1-n/2|}(\sqrt{c_6}z))^{-2} dz\right)
$$

\n
$$
\right) \exp (ic_1 + ic_6t), \quad p = -1, \quad c_6 > 0
$$

\n
$$
u = \left(k/c_6 + r^{1-n/2} (c_2I_{|1-n/2|}(\sqrt{c_6}r) + c_3K_{|1-n/2|}(\sqrt{c_6}r)) \times \right.
$$

\n
$$
\left(1 + c_5 \int_{c_4}^r z^{-1} (c_2I_{|1-n/2|}(\sqrt{c_6}z) + c_3K_{|1-n/2|}(\sqrt{c_6}z))^{-2} dz\right)
$$

\n
$$
\right) \exp (ic_1 - ic_6t), \quad p = -1, \quad c_6 > 0
$$

\n
$$
u = (-kr^2/(2n) + c_3r^{2-n} + c_2) \exp (ic_1), \quad p = -1, \quad n \neq 0, 2
$$

\n
$$
u = (-kr^2/4 + c_3 \ln r + c_2) \exp (ic_1), \quad p = -1, \quad n = 2
$$

K ロ X x (日 X X B X X B X X B X O Q O

$$
u = (c_2/r) \exp \left(i c_1 - i k t / c_2 + i k^2 t^3 / (3 c_2^2) \right), \quad p = -1, \quad n = 3
$$
\n
$$
u = \left(c_2 / (r t^{1/2}) \right) \exp \left(i c_1 - i r^2 / (4 t) - 2 i k r t^{3/2} / (5 c_2) + i k^2 t^4 / (25 c_2^2) \right), \quad p = -1, \quad n = 3
$$
\n
$$
u = \left(-(k/2) r^2 \ln r + c_3 r^2 + c_2 \right) \exp(i c_1), \quad p = -1, \quad n = 0
$$
\n
$$
u = \left((k/8) r^2 + c_3 r^6 / t^4 + c_2 t^2 \right) \exp(i c_1 - i r^2 / (4 t)),
$$
\n
$$
p = -1, \quad v = -4
$$
\n
$$
u = \left(-(k/c_6) t^2 + (r^3 / t) \left(c_2 J_3 (\sqrt{c_6} r / t) + c_3 Y_3 (\sqrt{c_6} r / t) \right) \times \left(1 + c_5 \int_{c_4}^{r/t} z^{-1} (c_2 J_3 (\sqrt{c_6} z) + c_3 Y_3 (\sqrt{c_6} z))^{-2} dz \right) \right)
$$
\n
$$
\exp \left(i c_1 - i c_6 / t - i r^2 / (4 t) \right),
$$
\n
$$
p = -1, \quad n = -4, \quad c_6 > 0
$$

$$
u = \left((k/c_6) t^2 + (r^3/t)(c_2l_3(\sqrt{c_6}r/t) + c_3K_3(\sqrt{c_6}r/t)) \times (1 + c_5 \int_{c_4}^{r/t} z^{-1}(c_2l_3(\sqrt{c_6}z) + c_3K_3(\sqrt{c_6}z))^{-2} dz) \right) \times \exp \left(ic_1 + ic_6/t - i r^2/(4t) \right), p = -1, \quad n = -4, \quad c_6 > 0 u = \left(\pm \sqrt{-k(1+3/n)/2} \right)^{-n/2} \left(r + c_2 t^{-1+4/n} r^{2(1-2/n)} \right)^{-n/2} \times \exp(ic_1 - i r^2/(4t)), \quad p = 8/(1 \pm \sqrt{17}) = (\pm \sqrt{17} - 1)/2, n = (1 \pm \sqrt{17})/2, \quad kn < 0
$$

K ロ X x (日 X X B X X B X X B X O Q O

$$
u = \left(c_2^2(8-3n)/k\right)^{n/4} r^{2-n} t^{-2+n/2} \times
$$

\n
$$
\exp\left(ic_1 - ir^2/(4t) + ic_2 r^{n-2} t^{2-n}\right)
$$

\n
$$
p = 8/(1 \pm \sqrt{17}) = (\pm \sqrt{17} - 1)/2,
$$

\n
$$
n = (1 \pm \sqrt{17})/2, \quad k > 0
$$

\n
$$
u = (-16k)^{-1/3} r^{2/3} (t(1 + c_2 t))^{-2/3} \times
$$

\n
$$
\exp(ic_1 - ir^2(1 + 2c_2 t)/(8t(1 + c_2 t))),
$$

\n
$$
p = 3, \quad n = 4/3, \quad k < 0
$$

Outline

[Introduction](#page-1-0)

[Group Foliation in 5 Steps](#page-25-0)

[Solving the Group-Resolving System](#page-56-0)

[Solutions for the Nonlinear Heat Equation](#page-75-0)

The semilinear radial Schrödinger equations

[Summary](#page-126-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Summary

 \blacktriangleright Results: explicit blow-up solutions of group-invariant form and non-invariant form, dispersive solutions, standing wave solutions, explicit monopole solutions,

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Summary

- \blacktriangleright Results: explicit blow-up solutions of group-invariant form and non-invariant form, dispersive solutions, standing wave solutions, explicit monopole solutions,
- \rightarrow goup foliation + reduction ansatz + intelligent computing power \Rightarrow effective method for finding exact solutions of nonlinear PDEs

KOD KOD KED KED E VAN

Summary

- \triangleright Results: explicit blow-up solutions of group-invariant form and non-invariant form, dispersive solutions, standing wave solutions, explicit monopole solutions,
- \rightarrow goup foliation + reduction ansatz + intelligent computing power \Rightarrow effective method for finding exact solutions of nonlinear PDEs
- \triangleright applied successfully to several types of semilinear PDEs: Schrödinger eqns. $i u_t = u_{xx} + \frac{m}{x}$ $\frac{m}{x}u_x + k|u|^p u$ S. Anco, W. Feng, T. Wolf, (J. Math. Anal. Appl. 2015)

heat eqns. and reaction-diffusion eqns.

 $u_t = u_{xx} + \frac{m}{x}$ *x u^x* + (*q* − *ku^p*)*u* S. Anco, S. Ali, T. Wolf, (J. Math. Anal. Appl. 2011, SIGMA 2011)

KORK ERKEY EL POLO

wave eqns. $u_{tt} = u_{xx} + \frac{m}{x}$ $\frac{m}{x}u_x + ku^{p+1}$ S. Anco, S. Liu (J. Math. Anal. Appl. 2005)

Future Work

Application to other types of PDEs, e.g. \geq 3 independent variables, quasilinear, derivative nonlinearities, larger number of symmetries

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Thank you!