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Interest in Exact Solutions

Exact solutions are of interest for understanding
I blow-up,

I dispersive behaviour,
I attractors,
I critical dynamics,

as well as for testing numerical solution methods.
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General Thoughts on Finding special Solutions
Given: a non-linear PDE for a function f = f (x , y , z) which has
x , y , z and f and fx , fy , fz occuring explicitly in the PDE. Which
ansatz may have a chance?

I f = f (x , y) or f = f (y , z) or f = f (z, x) ?
I f = f (c000 + c100x + c010y + c001z + ...+ cklmxky lzm) ?
I f = p(x) + q(y) + r(z) ?
I f = p(x , y) + q(y , z) + r(z, x) ?

Increasing the generality of the ansatz→ exponential increase
of complexity only marginal increase of chance to find solution
For a simple minded approach to work it needs to be paired
with a special property of the PDE.
Advantage of symmetries: They allow simple restrictions, like
∂f/∂z = 0 if z is a symmetry variable without cutting all
interesting solutions.
What other simple cut/ansatz becomes possible in the
presence of a (point-)symmetry?



General Thoughts on Finding special Solutions
Given: a non-linear PDE for a function f = f (x , y , z) which has
x , y , z and f and fx , fy , fz occuring explicitly in the PDE. Which
ansatz may have a chance?

I f = f (x , y) or f = f (y , z) or f = f (z, x) ?

I f = f (c000 + c100x + c010y + c001z + ...+ cklmxky lzm) ?
I f = p(x) + q(y) + r(z) ?
I f = p(x , y) + q(y , z) + r(z, x) ?

Increasing the generality of the ansatz→ exponential increase
of complexity only marginal increase of chance to find solution
For a simple minded approach to work it needs to be paired
with a special property of the PDE.
Advantage of symmetries: They allow simple restrictions, like
∂f/∂z = 0 if z is a symmetry variable without cutting all
interesting solutions.
What other simple cut/ansatz becomes possible in the
presence of a (point-)symmetry?



General Thoughts on Finding special Solutions
Given: a non-linear PDE for a function f = f (x , y , z) which has
x , y , z and f and fx , fy , fz occuring explicitly in the PDE. Which
ansatz may have a chance?

I f = f (x , y) or f = f (y , z) or f = f (z, x) ?
I f = f (c000 + c100x + c010y + c001z + ...+ cklmxky lzm) ?

I f = p(x) + q(y) + r(z) ?
I f = p(x , y) + q(y , z) + r(z, x) ?

Increasing the generality of the ansatz→ exponential increase
of complexity only marginal increase of chance to find solution
For a simple minded approach to work it needs to be paired
with a special property of the PDE.
Advantage of symmetries: They allow simple restrictions, like
∂f/∂z = 0 if z is a symmetry variable without cutting all
interesting solutions.
What other simple cut/ansatz becomes possible in the
presence of a (point-)symmetry?



General Thoughts on Finding special Solutions
Given: a non-linear PDE for a function f = f (x , y , z) which has
x , y , z and f and fx , fy , fz occuring explicitly in the PDE. Which
ansatz may have a chance?

I f = f (x , y) or f = f (y , z) or f = f (z, x) ?
I f = f (c000 + c100x + c010y + c001z + ...+ cklmxky lzm) ?
I f = p(x) + q(y) + r(z) ?

I f = p(x , y) + q(y , z) + r(z, x) ?
Increasing the generality of the ansatz→ exponential increase
of complexity only marginal increase of chance to find solution
For a simple minded approach to work it needs to be paired
with a special property of the PDE.
Advantage of symmetries: They allow simple restrictions, like
∂f/∂z = 0 if z is a symmetry variable without cutting all
interesting solutions.
What other simple cut/ansatz becomes possible in the
presence of a (point-)symmetry?



General Thoughts on Finding special Solutions
Given: a non-linear PDE for a function f = f (x , y , z) which has
x , y , z and f and fx , fy , fz occuring explicitly in the PDE. Which
ansatz may have a chance?

I f = f (x , y) or f = f (y , z) or f = f (z, x) ?
I f = f (c000 + c100x + c010y + c001z + ...+ cklmxky lzm) ?
I f = p(x) + q(y) + r(z) ?
I f = p(x , y) + q(y , z) + r(z, x) ?

Increasing the generality of the ansatz→ exponential increase
of complexity only marginal increase of chance to find solution
For a simple minded approach to work it needs to be paired
with a special property of the PDE.
Advantage of symmetries: They allow simple restrictions, like
∂f/∂z = 0 if z is a symmetry variable without cutting all
interesting solutions.
What other simple cut/ansatz becomes possible in the
presence of a (point-)symmetry?



General Thoughts on Finding special Solutions
Given: a non-linear PDE for a function f = f (x , y , z) which has
x , y , z and f and fx , fy , fz occuring explicitly in the PDE. Which
ansatz may have a chance?

I f = f (x , y) or f = f (y , z) or f = f (z, x) ?
I f = f (c000 + c100x + c010y + c001z + ...+ cklmxky lzm) ?
I f = p(x) + q(y) + r(z) ?
I f = p(x , y) + q(y , z) + r(z, x) ?

Increasing the generality of the ansatz→ exponential increase
of complexity only marginal increase of chance to find solution

For a simple minded approach to work it needs to be paired
with a special property of the PDE.
Advantage of symmetries: They allow simple restrictions, like
∂f/∂z = 0 if z is a symmetry variable without cutting all
interesting solutions.
What other simple cut/ansatz becomes possible in the
presence of a (point-)symmetry?



General Thoughts on Finding special Solutions
Given: a non-linear PDE for a function f = f (x , y , z) which has
x , y , z and f and fx , fy , fz occuring explicitly in the PDE. Which
ansatz may have a chance?

I f = f (x , y) or f = f (y , z) or f = f (z, x) ?
I f = f (c000 + c100x + c010y + c001z + ...+ cklmxky lzm) ?
I f = p(x) + q(y) + r(z) ?
I f = p(x , y) + q(y , z) + r(z, x) ?

Increasing the generality of the ansatz→ exponential increase
of complexity only marginal increase of chance to find solution
For a simple minded approach to work it needs to be paired
with a special property of the PDE.

Advantage of symmetries: They allow simple restrictions, like
∂f/∂z = 0 if z is a symmetry variable without cutting all
interesting solutions.
What other simple cut/ansatz becomes possible in the
presence of a (point-)symmetry?



General Thoughts on Finding special Solutions
Given: a non-linear PDE for a function f = f (x , y , z) which has
x , y , z and f and fx , fy , fz occuring explicitly in the PDE. Which
ansatz may have a chance?

I f = f (x , y) or f = f (y , z) or f = f (z, x) ?
I f = f (c000 + c100x + c010y + c001z + ...+ cklmxky lzm) ?
I f = p(x) + q(y) + r(z) ?
I f = p(x , y) + q(y , z) + r(z, x) ?

Increasing the generality of the ansatz→ exponential increase
of complexity only marginal increase of chance to find solution
For a simple minded approach to work it needs to be paired
with a special property of the PDE.
Advantage of symmetries: They allow simple restrictions, like
∂f/∂z = 0 if z is a symmetry variable without cutting all
interesting solutions.

What other simple cut/ansatz becomes possible in the
presence of a (point-)symmetry?



General Thoughts on Finding special Solutions
Given: a non-linear PDE for a function f = f (x , y , z) which has
x , y , z and f and fx , fy , fz occuring explicitly in the PDE. Which
ansatz may have a chance?

I f = f (x , y) or f = f (y , z) or f = f (z, x) ?
I f = f (c000 + c100x + c010y + c001z + ...+ cklmxky lzm) ?
I f = p(x) + q(y) + r(z) ?
I f = p(x , y) + q(y , z) + r(z, x) ?

Increasing the generality of the ansatz→ exponential increase
of complexity only marginal increase of chance to find solution
For a simple minded approach to work it needs to be paired
with a special property of the PDE.
Advantage of symmetries: They allow simple restrictions, like
∂f/∂z = 0 if z is a symmetry variable without cutting all
interesting solutions.
What other simple cut/ansatz becomes possible in the
presence of a (point-)symmetry?



How to apply symmetry group methods to solve
PDEs?

I Lie’s method of symmetry reduction [Lie, Ovsiannikov,
Bluman, Olver, ...]

I method of group foliation [Lie, Vessiot, Ovsiannikov]
I ∞ - dimensional symmetry group

[Nutku, Fels, Pohjanpelto, Sheftel, Winternitz, Golum,
Thompson & Valiquette]

I finite-dimensional symmetry group
[Anderson, Fels, Anco & Liu, Anco & Ali & Wolf, Anco &
Feng & Wolf]

I Group foliation is a geometrical generalization of symmetry
reduction.
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Symmetry Reduction

I solutions invariant w.r.t. (sub-)group G of symmetries
↔ fixed points of symmetry generators XG

I equation for G-invariant solutions of PDE
I differential order stays same
I jet space becomes smaller

I nth order PDE reduces to nth order ODE iff dim G is
sufficiently large
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Group Foliation

I orbits of (sub-)group G of symmetries of PDE
⇔ families of solutions closed w.r.t. action of G

I equations for G-closed solution families
I differential order is reduced
I size of jet space stays same

I nth order PDE converts into (n− 1)th order system of PDEs
I How can one solve the G-invariant system?
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Step 0: Determination of Symmetries

Consider 2nd order PDE in 2 independent variables
and 1 dependent variable

F (t , x ,u,ut ,ux ,utt ,utx ,uxx ) = 0

Lie symmetry group G with dim G <∞
⇔ group of point transformations on (t , x ,u) with generators XG
such that pr XGF = 0 modulo F = 0,DxF = 0,DtF = 0, ...

Consider one-dimensional subgroup G1 ∈ G generated by

X = τ(t , x ,u)∂t + ξ(t , x ,u)∂x + η(t , x ,u)∂u

Assume prolonged action on jet space J∞ = (t , x ,u,ut ,ux , ...)
is regular and transitive.

Construct group foliation in 5 main steps:
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Step 1: Invariantize Coordinates in Jet Space
invariants of X: y(t , x ,u), v(t , x ,u) s.t. X y = Xv = 0
canonical cordinate of X: z(t , x ,u) s.t. X z = 1.

regularity and transversality⇒ point transformation

(t , x ,u)→ (z, y , v)

coordinate transformation in jet space

J∞ = (z, y , v , vz , vy , vyy , vyz , vzz , ...)

symmetry generator X= ∂z ⇔ ε-translation

vy , vz(t , x ,u,ut ,ux ): 1st order differential invariants of pr X.
vyy , vyz , vzz(t , x ,u,ut ,ux ,utt ,utx ,uxx ): 2nd order differential

invariants of pr X.
etc.
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Example: Nonlinear heat equation

ut = uxx + m
x ux + kup+1 p 6= 0,−1, k 6= 0

m = non-negative integer⇒ m + 1 dim. radial heat conduction
m 6= non-negative integer⇒ 2 dim. radial heat conduction

with point source (1−m) limx→0 u

symmetry group generated by
X = ∂t time translation
X = ∂x (if m = 0) space translation
X = 2t∂t + x∂x − 2

p u∂u scaling

consider scaling symmetry X= 2t∂t + x∂x − 2
p u∂u

invariants ζ(t , x ,u) s.t. Xζ = 0 = 2tζt + xζx − 2
p uζu

⇒ ζ is function of y = x2

t , v = x2/pu

canonical coordinate z(t , x ,u) s.t. Xz = 1
⇒ z = ln x + (function of y , v) = ln x (for simplicity)
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Example Continued

Change of variables (t , x ,u)→ (z, y , v)

x = ez

t =
e2z

y

u = e−
2
p zv

⇒ Dx = zxDz + yxDy = e−zDz + 2e−zyDy
Dt = ztDz + ytDy = −e−2zy2Dy

symmetry generator becomes X= ∂z translation



Step 2: Invariantize Solution Space of PDE

Each orbit of symmetry group G1 represents a one-parameter
family of solutions u = u(t , x , c1) satisfying

F (t , x ,u,ut ,ux ,utt ,utx ,uxx ) = 0

action of G1 on solution is z → z + ε in terms of group
parameter ε
⇒ invariantized solution family v = v(z + c̃1, y) s.t. vz 6= 0 with
c̃1 → c̃1 + ε under G1

PDE is invariant w.r.t. X = ∂z
⇔ F̃ (y , v , vy , vz , vyy , vyz , vzz) = 0 (F̃z = XF = 0)
is the invariantized PDE
solution family satisfies F̃ (y , v , vy , vz , vyy , vyz , vzz) = 0
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Example Continued

The “invariantized” heat equation becomes

0 = vzz + 4yvyz +

(
m − 1− 4

p

)
vz

+4y2vyy + y
(

y − 8
p

+ 2(m + 1)

)
vy

+
2
p

(
1 +

2
p
−m

)
v + kvp+1 (1)

Any solution v = v(z, y) gives a solution
u = x−2/pv(ln x + c1, x2/t).

The method of symmetry reduction (of the number of variables)
assumes vz = 0. What remains of (1) has no point symmetries
according to LIEPDE and no first integrals according to
CONLAW.
⇒ Classical symmetry method reaches a dead end!
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Step 3: Adapt Variables to Orbits of Symmetry Group
along orbit v = v(z + c̃1, y)
⇒ z = Z (y , v)− c̃1 by implicit function theorem
⇒ use y , v (invariants of X) as independent variables and

use differential invariants of pr X as dependent variables

vz |orbit = vz |z=Z−c̃1
=: Γ1,0(y , v)

vy |orbit = vy |z=Z−c̃1
=: Γ0,1(y , v)

}
1storder

vzz |orbit = vzz |z=Z−c̃1
=: Γ2,0(y , v)

vzy |orbit = vzy |z=Z−c̃1
=: Γ1,1(y , v)

vyy |orbit = vyy |z=Z−c̃1
=: Γ0,2(y , v)

2ndorder

etc.
relations between 1st order Γ’s and 2nd order Γ’s:

(vz)z = vzz , (vy )y = vyy , (vy )z = (vz)y

are called syzygys



Computation of Syzygys

Dz = pr ∂z = ∂z + vz∂v + vzz∂vz + vzy∂vy + ...
Dy = pr ∂y = ∂y + vy∂v + vzy∂vz + vyy∂vy + ...

}
prolongations
to J∞
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y + Γ0,1Γ1,0

v

Γ1,1 = D̂zΓ0,1 = Γ1,0Γ0,1
v

= D̂y Γ1,0 = Γ1,0
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J∞|orbit = (y , v , Γ1,0, Γ0,1, Γ2,0, Γ1,1, Γ0,2, ...) modulo syzygys
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Step 4: Convert Invariantized PDE into 1st Order
System

independent variables: y , v
dependent variables: Γ1,0, Γ0,1

}
along orbits of G1

syzygy relating 1st order Γ’s: 0 = Γ1,0
y +Γ0,1Γ1,0

v−Γ1,0Γ0,1
v (2)

invariantized PDE:

0 = F̃ (y , v , vz , vy , vzz , vzy , vyy )|orbit

= F̃ (y , v , Γ1,0, Γ0,1, Γ2,0, Γ1,1, Γ0,2) ≡ F̂

Substitution of Γ2,0, Γ1,1, Γ0,2 using above syzygies gives

0 = F̂ (y , z, Γ1,0, Γ0,1, Γ1,0
y , Γ

0,1
y , Γ

1,0
v , Γ

0,1
v ). (3)

(2), (3) are the group-resolving system which is a 1st order
system of PDEs for Γ1,0(y , v), Γ0,1(y , v).
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Example Continued

vz |orbit = Γ1,0, ... , vyy |orbit = Γ0,1
y + Γ0,1Γ1,0

v ⇒

0 = (vzz+...+ kvp+1)|orbit (invariantized heat equation)

= Γ1,0
v Γ1,0 + 4yΓ0,1

v Γ1,0 +

(
m − 1− 4

p

)
Γ1,0

+4y2(Γ0.1
y + Γ0,1

v Γ0,1 + y
(

y − 8
p

+ 2(m + 1)

)
Γ0,1

+
2
p

(
1 +

2
p
−m

)
v + kvp+1

Using the syzygy

Γ0,1Γ1,0
v − Γ1,0Γ0,1

v + Γ1,0
y = 0 (4)

the scaling group resolving system for Γ1,0(y , v), Γ0,1(y , z) is ...
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Example: Group Resolving Equations

Γ0,1Γ1,0
v − Γ1,0Γ0,1

v + Γ1,0
y = 0 (5)

−1
2

(2yΓ0,1 − Γ1,0)(2yΓ0,1
v − Γ1,0

v )− 4y2Γ0,1
y + 2yΓ1,0

y

+Γ0,1 − (2p + m − 1)Γ1,0 + (2p + m − 3)2yΓ0,1 (6)
= kvp+1 + p(p + m − 1)v

L.h.s. of (5) has general form Υ1(Γ) := α1Γ ∧ Γv + β1Γy
L.h.s. of (6) has general form Υ2(Γ) := α2Γ� Γv + β2Γy + γ2Γ
(∧: antisymmetric product, �: symmetric product)



Step 5: After solving the System:
Reconstruct the PDE Solution Families from Orbits

Let
Γ1,0 = g(y , v), Γ0,1 = h(y , v)

satisfy the group-resolving system.

on orbit: vz = g(y , v), vy = h(y , v)
which is a pair of G1-invariant ODEs.
invariance⇒ can integrate to obtain v(z, y) (up to quadrature)

called automorphic property
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1. Case of Integration

I g = 0

⇒ vz = 0⇒ 1st order ODE vy = h(y , v) for v(y)
(without guarantee that this ODE can be solved)
any solution v = v(y , c1) is invariant w.r.t. X = ∂z ,

change variables (z, y , v)→ (t , x ,u)

⇒ solution u = u(t , x , c1) invariant w.r.t. G1,

⇒ one-parameter family of fixed points of G1

⇒ this case is equivalent to the symmetry method
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2. Case of Integration

I g 6= 0

on orbit: vz = g(y , v), vy = h(y , v)
⇒ use hodograph transformation on z, v
⇒ z(y , v) satisfies

zv = 1/g(y , v), zy = −h(y , v)/g(y , v)

solve by line integral formula

z + c̃1 =

∫
1

g(y , v)
dv − h(y , v)

g(y , v)
dy (path− independent)

⇒ implicit solution v = v(z + c̃1, y)

change of variables (z, y , v)→ (t , x ,u)
⇒ solution u = u(t , x , c1) closed family w.r.t. G1, i.e.
one-dimensional orbit of G1
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Theorem

For 2nd order PDE

F (t , x ,u,ut ,ux ,utt ,uxx ,utx ) = 0

in 2 independent variables t , x and 1 dependent variable u with
one-dimensional symmetry (sub-)group G1, solutions of the
group-resolving system

Γ1,0 = g(y , v), Γ0,1 = h(y , v)

are in one-to-one correspondence with one-parameter families
of solutions u = u(t , x , c1) of the PDE such that the family is
closed under the action of G1.

This generalizes to PDEs of higher order, arbitrary # of
dependent and independent variables and higher dimensional
symmetry group (abelian or solvable).
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How to find solutions of the group-resolving system?

I All solutions of original PDE arise from solution space of
group-resolving system (including those from symmetry
reduction which compose special case).
⇒ cannot solve group-resolving system in general (unless
original PDE itself can be solved)

I look for special solutions of group-resolving system
⇒ impose reduction ansatz or condition on system, e.g.
Γ1,0 = 0 (1. case in reconstruction step)
⇒ system reduces to 1st order equation for Γ0,1

⇒ characteristics of equation reproduce ODE for G1
invariant solutions of original PDE

I if original PDE has additional symmetries inherited by the
group-resolving system then symmetry reduction possible
⇒ yields only group-invariant solutions of original PDE
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Reduction Methods for Group-Resolving Systems

I reduction under hidden symmetries

I Bluman’s nonclassical method (invariant surface condition)
Clarkson’s direct method and more general functional
separation methods

I (successfully used by us:)
separation ansatz tailored to certain homogeneity features
of group-resolving system

I yields explicit solutions
I semi-algorithmic⇒ suited to computer algebra (e.g.

Crack/Reduce)
I used for group-resolving systems coming from semilinear

PDEs with power nonlinearities
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Example: Homogeneity Property
Ansatz Γ = a(y)v + b(y)vq with q 6= 1 gives conditions

q q q q q
0=a10 *v + v *b10 + v *a01*b10*q - v *a01*b10 - v *a10*b01*q + v *a10*b01

y y

2 q p 2 2*q 2 2 2*q
0=4*a10 *v *y + 4*v *b10 *v*y - 2*v *k*v - 4*v *b01 *q*y + 4*v *b01*b10*q*y

y y

2*q 2 q 2 q
- v *b10 *q - 4*v *a01*b01*(q+1)*v*y + 2*v *a01*b10*(q+1)*v*y

q q q q
+ 2*v *a10*b01*q*v*y + 2*v *a10*b01*v*y - v *a10*b10*(q+1)*v + 4*v *b01*m*v*y

q q q q q
+ 8*v *b01*p*v*y - 12*v *b01*v*y + 2*v *b01*v - 2*v *b10*m*v - 4*v *b10*p*v

q 2 2 2 2 2 2
+ 2*v *b10*v - 4*a01 *v *y + 4*a01*a10*v *y + 4*a01*m*v *y + 8*a01*p*v *y

2 2 2 2 2 2 2
- 12*a01*v *y + 2*a01*v - a10 *v - 2*a10*m*v - 4*a10*p*v + 2*a10*v

2 2 2 2
+ 2*m*p*v + 2*p *v - 2*p*v

1st condition→ a10 =const + ODE
2nd condition has exponents v2, vq+1, v2q, vp+2



Example:
⇒ 2 cases: q = p + 1, q = p/2 + 1 with each 4 conditions for 3
functions a01,b01,b10 and 3 constants p,m, c1, (k is a
parameter), for example:

0=2*b10 + a01*b10*p + b01*c1*p
y

2 2 2 2 2 2
0=4*b01 *p*y + 8*b01 *y - 4*b01*b10*p*y - 8*b01*b10*y + b10 *p + 2*b10 + 4*k

2 2 2
0=4*a01 *y + 4*a01*c1*y - 4*a01*m*y - 8*a01*p*y + 12*a01*y - 2*a01 + c1

2
- 2*c1*m - 4*c1*p + 2*c1 - 2*m*p - 2*p + 2*p

2 2
0=4*a01*b01*p*y + 16*a01*b01*y + 2*a01*b10*p*y - 8*a01*b10*y + 6*b01*c1*p*y

+ 8*b01*c1*y - 8*b01*m*y - 16*b01*p*y + 24*b01*y - 4*b01 - b10*c1*p

- 4*b10*c1 + 4*b10*m + 8*b10*p - 4*b10

To obtain all solutions one can use computer algebra packages
for solving nonlinear overdetermined systems of
algebraic/differential equations, e.g. the package CRACK.
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Example: Solutions of the group resolving System I

(i) Γ0,1 = kvp+1, Γ1,0 =
2
p

v +
2k
y

vp+1

(ii) Γ0,1 = 0, Γ1,0 =
2
p

v ±

√
−2k
p + 2

v1+p/2, m = 0

(iii) Γ0,1 = ±(3−m)

√
k(1−m)

m − 2
v

m−2
m−1

Γ1,0 = 2(1−m)v ± 2

√
k(1−m)

m − 2

(
1
2

+
3−m

y

)
v

m−2
m−1

p =
2

1−m



Example: Solutions of the group resolving System II

(iv) Γ0,1 = 0

Γ1,0 = ±
√

k(1−m)v
1

m−1 − (m − 1)2

m − 2
v

p =
4− 2m
m − 1

(v) Γ0,1 =
3

3y + 1
(v ±

√
−2kv2)

Γ1,0 =
3

2y(3y + 1)

((
y2 +

5
3

y + 4
)

v

±
√
−2k

(
y2 +

1
3

y + 4
)

v2
)

p = 2, m =
3
2



Example: Solutions of the group resolving System III

(vi) Γ0,1 =
3

3y + 1
v ± 3

2

√
kv−1

Γ1,0 =
3

y(3y + 1)

((
−y2 +

1
3

y + 2
)

v

±
√

k
(

y2 +
10
3

y + 1
)

v−1
)

p = −4, m =
3
2



Solutions of Nonl. Heat Eqn. ut = uxx +
m
x ux + kup+1

(i) u = (−kp(t + c1))−1/p

invariant under scaling symmetry and time-translation
X= 2(t + c1)∂t + x∂x − 2

p u∂u

(ii) u = x−2/p

(
±p

2

√
−2k
p + 2

ln x + c1

)−2/p

, m = 0

non-invariant w.r.t. X= a∂t + b(2t∂t + x∂x − 2
p u∂u)



Solutions of Nonl. Heat Equation continued

(iii) u =

(
±

√
−k

(m − 1)(m − 3)

(
x
2
− (m − 3)

t + c1

x

))m−1

q =
3

1−m
, m 6= 1

I invariant w.r.t. X= 2(t + c1)∂t + x∂x − 2
p u∂u

scaling+time-translation
I one-dimensional orbit of scaling group

(t → e2ε, x → eεx , u → e−2ε/qu)⇒ (c1 → c̃1 = e−εc1)

(ε =group parameter)



Solutions of Nonl. Heat Equation continued

(iv) u =

(
±
√

1−m
k

(
c1x3−m − x

))m−1
m−2

,

p =
4− 2m
m − 1

non-invariant w.r.t. X= a∂t + b(2t∂t + x∂x − 2
p u∂u)



Solutions of Nonl. Heat Equation continued

(v) u = ± 5√
−2k

3t + x2

x(15t + x2) + c1x1/2 , q = 2, m = 3/2

I non-invariant w.r.t. X = a∂t + b(2t∂t + x∂x − u∂u)

I one-dimensional orbit of scaling group

(t → e2ε, x → eεx , u → e−εu)⇒ (c1 → c̃1 = e−1/2εc1)



Solutions of Nonl. Heat Equation continued

(vi) u =

(
±
√

k(1 + c1(3t + x2))

(
3t
x

+ x
))1/2

, q = −4,m = 3/2.

I non-invariant w.r.t. X = a∂t + b(2t∂t + x∂x + 1
2u∂u)

I one-dimensional orbit of scaling group

(t → e2εt , x → eεx , u → eε/2u)⇒ (c1 → c̃1 = e2εc1)
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The Equation

iut = urr + mur/r + k |u|pu, p 6= 0, k 6= 0 (7)

for u(t , r), and p,m constant.

I m > 0 ∈ N: model for slow modulation of radial waves in a
weakly nonlinear, dispersive, isotropic medium in m + 1
dimensions (Sulem, Sulem)

I m = 0: same, only r is the full-line coordinate
I otherwise can be interpreted as slow modulation of

two-dimensional radial waves in a planar, weakly nonlinear,
dispersive medium containing a point-source disturbance
at the origin, with modulation term (m − 1)ur/r .
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Point Symmetries

time translation Xtrans. = ∂t
phase rotation Xphas. = iu∂u − iū∂ū
scaling Xscal. = 2t∂t + r∂r − (2/p)u∂u − (2/p)ū∂ū
inversion Xinver. = t2∂t + tr∂r − (2t/p + ir2/4)u∂u

−(2t/p − ir2/4)ū∂ū (only for p = 4/n)

where X is the infinitesimal generator of a one-dimensional
group of point transformations acting on (t , r ,u, ū). The
inversion is called a pseudo-conformal transformation, and the
special power for which it exists is commonly called the critical
power.



Symmetry Groups

On solutions u = f (t , r) of the radial NLS equation (7), the
one-dimensional symmetry groups arising from the 4
generators are given by

u = f (t − ε, r),

u = exp (iφ)f (t , r),

u = λ−2/pf (λ−2t , λ−1r),

u = (1 + εt)−2/p exp
(
− iεr2

4 + 4εt

)
f
(

t
1 + εt

,
r

1 + εt

)
, p =

4
n
,

with group parameters −∞ < ε <∞, 0 < λ <∞, 0 ≤ φ < 2π.



Resulting ODEs
Examples:
For p = 4/n > 0 (“critical case”), blow-up solutions

u(t , r) = (T−t)−n/2U(ξ) exp(i(ω+r2/4)/(T−t)), ξ = r/(T−t),

are invariant under a certain pseudo-conformal subgroup in the
full symmetry group, where U(ξ) satisfies the complex ODE

U ′′ + (n − 1)ξ−1U ′ + ωU + k |U|4/nU = 0.

For p > 4/n > 0 (“super critical case”) a general class of
blow-up solutions is believed to asymptotically approach

u(t , r) = (T − t)−1/pU(ξ) exp(iω ln((T − t)/T )), ξ = r/
√

T − t ,

which is invariant under a certain scaling subgroup in the full
symmetry group of (7), where U(ξ) satisfies the complex ODE

U ′′ + ((n − 1)ξ−1 − 1
2 iξ)U ′ − (ω + i/p)U + k |U|pU = 0.

Both ODEs are intractable.
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Time-translation-group Resolving System I
Obvious invariants: x = r , v = u satisfy Xtrans.{x , v , v̄} = 0
and Xphas.x = 0, Xphas.v = iv , Xphas.v̄ = −iv̄ .

Obvious differential invariants: G = ut , H = ur satisfy
X(1)

trans.G = X(1)
trans.H = 0 and X(1)

phas.G = iG, X(1)
phas.H = iH,

where X(1)
trans., X(1)

phas. are first-order prolongations.

x , v , v̄ are mutually independent,
G,H are related by Dr G = DtH and the radial NLS equation

iG − r1−nDr (rn−1H) = kv1+p/2v̄p/2.

To summarize, G = G(x , v , v̄), H = H(x , v , v̄) satisfy

Gx + HGv −GHv + H̄Gv̄ − ḠHv̄ = 0
iG − (n − 1)H/x − Hx − HHv − H̄Hv̄ = kv1+p/2v̄p/2

what we call the time-translation-group resolving system.
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Time-translation-group Resolving System II

Lemma
Phase-equivariant solutions G = g(x , |v |)v ,H = h(x , |v |)v of
the time-translation-group resolving system are in one-to-one
correspondence with two-parameter families of solutions
u = u(t , r , c1) exp(ic2) of the radial NLS equation satisfying the
time-translation invariance property

u(t + ε, r , c1) = u(t , r , c̃1(ε, c1)) exp(ic̃2(ε, c2)) (8)

(in terms of group parameter ε) with c̃1(0, c1) = c1 and
c̃2(0, c2) = 0, where c1, c2 are the constants of integration of
the pair of parametric first-order ODEs

ur = h(r ,u, ū), ut = g(r ,u, ū)

which are invariant under Xtrans. and Xphas..



Time-translation-group Resolving System III

Lemma
There is a one-to-one correspondence between two-parameter
families of static solutions u = f (r , c1) exp(ic2) of the radial NLS
equation (7) and solutions of the time-translation-group
resolving system that satisfy condition G = 0.



A Homogeneity Observation
The group-resolving systems for G = G(x , v , v̄), H = H(x , v , v̄)
have the structure(

Υ1(G,H)
G + Υ2(H)

)
=

(
0

−ikv1+p/2v̄p/2

)
where Υ1 and Υ2 are quadratic nonlinear 1st-order differential
operators

which obey the homogeneity properties:

Υ1(αv + βvbv̄a, γv + λvbv̄a) = νv + µvbv̄a

Υ2(γv + λvbv̄a) = νv + µvbv̄a + εv2b−1v̄2a + κva+bv̄a+b−1

with α, β, ε, κ, λ, ν, µ denoting functions only of x .
Additionally, these operators have the phase invariance
properties:

Xphas.Υ1(va+1v̄a, vb+1v̄b) = iΥ1(va+1v̄a, vb+1v̄b)

Xphas.Υ2(vb+1v̄b) = iΥ2(vb+1v̄b)
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Ansatz

Based on these homogeneity and phase invariance properties
the group-resolving system should have solutions of form

H = (h1(x) + h2(x)|v |2a)v ,

G = −Υ2

(
(h1(x) + h2(x)|v |2a)v

)
− ikv |v |p,

a 6= 0, satisfying X(1)
phas.H = iH and X(1)

phas.G = iG.

In particular, the homogeneity properties show that the v term
in H will produce terms in Υ1(G,H) and Υ2(H) that contain the
same powers v , v |v |2a already appearing in H and G.
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Splitting

Substitution of the ansatz in the group-resolving system gives
one equation with monomial powers

v , v |v |2a, v |v |4a, v |v |6a, v |v |p, v |v |p+2a.

Splitting is performed for each one of the automatically
generated possible pairings of exponents, like p = 2a( 6= 0)

Each splitting results in an overdetermined differential system
for 2 complex (= 4 real) functions of x and constants a,p,m.
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Solution of Overdetermined Systems I

Computer algebra package / system: CRACK / REDUCE

Methods: computation of differential Gröbner basis,
integrations, splittings, maintaining list of
inequalities, > 80 modules, link to external
packages SINGULAR and DIFFELIM

allows different levels of automation

Problems: increasing length of equations and large number
of cases and subn-cases



Solution of Overdetermined Systems continued

Unorthodox measures:
I not aiming at eliminating functions to be able to split wrt. x

but to eliminate x earlier and to split wrt. one x-dependent
function,

I reducing the number of different x-dependent functions
including x itself by creating homogeneous equations
through

I introducing new functions, e.g. h3(x) := xh2(x) for which
some equations become x-free

I combining equations to eliminate inhomogeneous terms

with the effect of eliminating x automatically when
eliminating the functions so that finally one x-dependent
function less needs to be eliminated before splitting wrt.
the last x-dependent function becomes possible

I to work at first only with a subset of equations that are
homogeneous in some sense,
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Solution of Overdetermined Systems continued

More unorthodox measures:
I to give the reduction of non-linearity a higher weight than

the reduction of differential order

I to try integrating equations and by that reducing the
number of terms and lowering the differential order
resulting in fewer steps in the decoupling process,
reducing the length explosion later on

I after the final splitting large polynomial systems for
unknown constants remain to be solved, use the package
SINGULAR or resultant computing techniques both
applicable from within the package CRACK.
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Results for the Time+Phase-Translation-Group
Resolving System

Solutions exist only in the cases a = p/2, a = p/4, and
a = 1/n. For p 6= 0 and n 6= 1, these solutions are given by:

h1 = h2 = 0

h1 = Re h2 = 0, (x−1h2)′ = 0, a = 1/n, n 6= 0

h1 = (2− n)x−1, Re h2 = 0, h2
2 = 2k(2− n)/n,

a = p/4, p = 2/(2− n), n 6= 2

h1 = (2− n)x−1, Re h2 = 0, h2
2 = −k ,

a = p/4, p = 2(3− n)/(n − 2), n 6= 2,3



Results continued

h1 = (2− n)x−1, Im h2 = 0, h2
2 = (2− n)k ,

a = p/4, p = 2(3− n)/(n − 2), n 6= 2,3

h1 = Im h2 = 0, h′2 + (n − 1)x−1h2 + k = 0,
a = −1/2, p = −1

Im h1 = Im h2 = 0, h′1 + h1
2 + (n − 1)x−1h1 = 0,

h′2 + (h1 + (n − 1)x−1)h2 + k = 0, a = −1/2, p = −1

Im h1 = Im h2 = 0, x2h′′1 + (2x2h1 + (n − 1)x)h′1 − (n − 1)h1 = 0,

h′2 + (h1 + (n − 1)x−1)h2 + k = 0, a = −1/2, p = −1



The Solutions for H and G
For p 6= 0 and n 6= 1, the earlier ansatz yields the following
solutions of the time-translation-group resolving system:

H = 0,G = −ikv1+p/2v̄p/2

H = iC1xv1+1/nv̄1/n,

G = iC1
2x2v1+2/nv̄2/n + C1nv1+1/nv̄1/n − ikv1+p/2v̄p/2,

n 6= 0, C1 6= 0
H = (2− n)x−1v ± i

√
2k(1− 2/n)v (5−2n)/(4−2n)v̄1/(4−2n),

G = ±(4− n)
√

2k(1− 2/n)x−1v (5−2n)/(4−2n)v̄1/(4−2n)

+ik(1− 4/n)v (3−n)/(2−n)v̄1/(2−n),

p = 2/(2− n), k(1− 2/n) > 0, n 6= 2

H = (2− n)x−1v ± i
√

kv (n−1)/(2n−4)v̄ (3−n)/(2n−4),

G = 0, p = 2(3− n)/(n − 2), k > 0, n 6= 2,3
H = (2− n)x−1v ∓

√
(2− n)kv (1−n)/(4−2n)v̄ (n−3)/(4−2n),

G = 0, p = 2(3− n)/(n − 2), k(2− n) > 0, n 6= 2,3



More Solutions for H and G

H =
(
−(k/n)x + C1x1−n

)
v1/2v̄−1/2, G = 0,p = −1, n 6= 0

H = x(C1 − k ln x)v1/2v̄−1/2, G = 0, p = −1, n = 0
H = (2− n)(x + C1xn−1)−1(v + (C2 + (k/(2n))x2)v1/2v̄−1/2)

−(k/n)xv1/2v̄−1/2, G = 0, p = −1, n 6= 0,2
H = x(x2 + C1)−1(2v − (kC1 ln x + C2))v1/2v̄−1/2)

−(k/2)xv1/2v̄−1/2, G = 0, p = −1, n = 0
H = (ln x + C1)−1x−1(v + (C2 + (k/4)x2)v1/2v̄−1/2)

−(k/2)xv1/2v̄−1/2, G = 0
p = −1, n = 2



More Solutions for H and G

H = ±
√

C1

(
C2J|1−n/2|(

√
C1x) + C3Y|1−n/2|(

√
C1x)

)−1
×(

(C2J∓n/2(
√

C1x) + C3Y∓n/2(
√

C1x)) ×

(v + (k/C1)v1/2v̄−1/2) + C4x−n/2v1/2v̄−1/2
)

G = iC1v , p = −1, ±(1− n/2) ≥ 0, C1 > 0

H =
√

C1

(
C2I|1−n/2|(

√
C1x) + C3eiπ|1−n/2|K|1−n/2|(

√
C1x)

)−1
×(

(C2I∓n/2(
√

C1x) + C3e∓iπn/2K∓n/2(
√

C1x)) ×

(v − (k/C1)v1/2v̄−1/2) + C4x−n/2v1/2v̄−1/2
)

G = −iC1v , p = −1, ±(1− n/2) ≥ 0, C1 > 0



Solutions of the Radial NLS

The radial NLS equation has the following exact solutions
arising from the explicit solutions of the time+phase-translation
group resolving systems for n 6= 1:

u = (c2/k)1/p exp(ic1 − ic2t)

u = (c2 + c3t)−n/2 exp
(

ic1 −
ic3r2

4(c2 + c3t)

+
2ik

c3(np − 2)
(c2 + c3t)1−np/2

)
,

p 6= 2/n, n 6= 0, c3 6= 0

u = (c2 + c3t)−n/2 exp
(

ic1 −
ic3r2

4(c2 + c3t)
− ik

c3
ln |c2 + c3t |

)
,

p = 2/n, n 6= 0, c3 6= 0



More Solutions of the Radial NLS

u = (±
√

n(n − 2)/(2k))2−n ((c2 + (n − 4)t)/r)n−2

exp
(

ic1 + i(1− n/2)r2/(c2 + (n − 4)t)
)
,

p = 2/(2− n), n(n − 2)/k > 0, n 6= 2

u =
(

k(n − 3)2/(2− n)3
)(2−n)/(6−2n) (

r + c2r3−n
)(2−n)/(3−n)

×

exp(ic1), p = 2(3− n)/(n − 2), k(2− n) > 0, n 6= 2,3

u =
(

c2
2(n − 2)2/k

)(n−2)/(6−2n)
r2−n ×

exp(ic1 + ic2rn−2),

p = 2(3− n)/(n − 2), k > 0, n 6= 2,3, c2 6= 0



More Solutions of the Radial NLS

u =
(
− k/c6 + r1−n/2 (c2J|1−n/2|(

√
c6r) + c3Y|1−n/2|(

√
c6r)

)
×(

1 + c5

∫ r

c4

z−1(c2J|1−n/2|(
√

c6z) + c3Y|1−n/2|(
√

c6z))−2 dz
)

)
exp (ic1 + ic6t) , p = −1, c6 > 0

u =
(

k/c6 + r1−n/2 (c2I|1−n/2|(
√

c6r) + c3K|1−n/2|(
√

c6r)
)
×(

1 + c5

∫ r

c4

z−1(c2I|1−n/2|(
√

c6z) + c3K|1−n/2|(
√

c6z))−2 dz
)

)
exp (ic1 − ic6t) , p = −1, c6 > 0

u = (−kr2/(2n) + c3r2−n + c2) exp(ic1), p = −1, n 6= 0,2
u = (−kr2/4 + c3 ln r + c2) exp(ic1), p = −1, n = 2



More Solutions of the Radial NLS

u = (c2/r) exp
(

ic1 − iktr/c2 + ik2t3/(3c2
2)
)
, p = −1, n = 3

u =
(

c2/(rt1/2)
)

exp
(

ic1 − ir2/(4t)− 2ikrt3/2/(5c2)+

ik2t4/(25c2
2)
)
, p = −1, n = 3

u = (−(k/2)r2 ln r + c3r2 + c2) exp(ic1), p = −1, n = 0

u =
(

(k/8)r2 + c3r6/t4 + c2t2
)

exp(ic1 − ir2/(4t)),

p = −1, v n = −4

u =

(
− (k/c6)t2 + (r3/t)

(
c2J3(

√
c6r/t) + c3Y3(

√
c6r/t)

)
×(

1 + c5

∫ r/t

c4

z−1(c2J3(
√

c6z) + c3Y3(
√

c6z))−2 dz
))

exp
(

ic1 − ic6/t − ir2/(4t)
)
,

p = −1, n = −4, c6 > 0



More Solutions of the Radial NLS

u =

(
(k/c6)t2 + (r3/t)(c2I3(

√
c6r/t) + c3K3(

√
c6r/t))×(

1 + c5

∫ r/t

c4

z−1(c2I3(
√

c6z) + c3K3(
√

c6z))−2 dz
))
×

exp
(

ic1 + ic6/t − ir2/(4t)
)
,

p = −1, n = −4, c6 > 0

u =
(
±
√
−k(1 + 3/n)/2

)−n/2 (
r + c2t−1+4/nr2(1−2/n)

)−n/2
×

exp(ic1 − ir2/(4t)), p = 8/(1±
√

17) = (±
√

17− 1)/2,
n = (1±

√
17)/2, kn < 0



More Solutions of the Radial NLS

u =
(

c2
2(8− 3n)/k

)n/4
r2−nt−2+n/2 ×

exp
(

ic1 − ir2/(4t) + ic2rn−2t2−n
)

p = 8/(1±
√

17) = (±
√

17− 1)/2,
n = (1±

√
17)/2, k > 0

u = (−16k)−1/3 r2/3(t(1 + c2t))−2/3 ×
exp(ic1 − ir2(1 + 2c2t)/(8t(1 + c2t))),

p = 3, n = 4/3, k < 0
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Summary

I Results: explicit blow-up solutions of group-invariant form
and non-invariant form, dispersive solutions, standing wave
solutions, explicit monopole solutions,

I goup foliation + reduction ansatz + intelligent computing
power⇒ effective method for finding exact solutions of
nonlinear PDEs

I applied successfully to several types of semilinear PDEs:

Schrödinger eqns. iut = uxx + m
x ux + k |u|pu

S. Anco, W. Feng, T. Wolf, (J. Math. Anal. Appl. 2015)

heat eqns. and reaction-diffusion eqns.
ut = uxx + m

x ux + (q − kup)u
S. Anco, S. Ali, T. Wolf, (J. Math. Anal. Appl. 2011, SIGMA
2011)

wave eqns. utt = uxx + m
x ux + kup+1

S. Anco, S. Liu (J. Math. Anal. Appl. 2005)
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Future Work

Application to other types of PDEs, e.g. ≥ 3 independent
variables, quasilinear, derivative nonlinearities, larger number
of symmetries



The End

Thank you!
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