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Algebraic Challenges

Is a given octonion polynomial identically zero?

How to simplify an octonion polynomial?

How to decide ideal membership?

Find all identically vanishing polynomials up to some degree.

Find all central (real) polynomials up to some degree.
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Differential Challenges

To classify integrable evolutionary PDEs over octonions

decide on homogeneity weights of u, ∂t, ∂x, L where u = u(t, x)
is octonion valued

make a general ansatz (with minimal number of terms) for
homogeneous polynomials F,L,M in u, ux, uxx, . . . with
undetermined coefficients satisfying ut = F, Lt = [L,M ]

replace u by its component form u =
∑7

i=0 ui(x, t)ei

split Lt = [L,M ] w.r.t. ei, ui, uix, ...

solve the system of bilinear algebraic conditions for the
undetermined coefficients in F,L,M to obtain integrable
evolution equations ut = F together with their Lax-pair L,M .
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About Octonions I

have eight dimensions

Cayley–Dickson construction: real, complex, quaternions,
octonions, sedenions,... by introducing 1 new imaginary
number each time
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About Octonions II

normed division algebra over the real numbers

noncommutative, nonassociative but
alternative: x(xy) = (xx)y, (yx)x = y(xx),

as a consequence the
associator [x, y, z] := (xy)z − x(yz)
satisfies
[x, x, y] = [y, x, x] = 0
and as a consequence of that also
[x, y, x] = 0.
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Vanishing Identities P = 0

Outline

Formulate a general polynomial P of degree d in n octonion
variables u, .. with undetermined coefficients ck

Replace variables by their component form, e.g. u =
∑7

i=0 uiei

Split P = 0 w.r.t. ei, ui, ...

Solve the linear system for the undetermined coefficients ck

Substitute general solution into P

Get all IDs (identities) as coefficients of free parameters in P

Find linear combinations of identities and permutations of
them that are short, highly symmetric to allow a compact
formulation.
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)

m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : d!×m(d) (multilinearity)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6 7 8
m 1 1 2 5 14 42 132 429
t 1 2 12 120 1680 30240 6.65× 105 1.69× 107

τ 8 128 6140 491520 55× 106 7.9× 109 1.39× 1012 2.84× 1014

c 8 16 24 32 40 48 56 64
i 0 0 5 88 1530 ? ? ?
e 1 2 7 32 150 ? ? ?
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e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?
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Central Polynomials

A polynomial P = P (x, y, . . .) is a central polynomial if P is real
for any octonion variables x, y, ... and thus commutes with any
other octonian variable u:

[P, u] = 0

and thus also satisfies the vanishing identity

[P, u, v] = (Pv)w − P (vw) = P (vw)− P (vw) = 0

for any octonions u, v.

Same procedure to compute them, only ignore coefficient of e0
after splitting w.r.t. ei.
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Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4],
Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4: [a, b] ◦ [c, d], (1)

where x ◦ y := xy + yx,

degree 5:
∑
alt

{24a(b(c(de))) + 8a([b, c, d]e)− 11[a, b, [c, d, e]]}, (2)

where
∑

is the alternating sum over the arguments.

degree 6: No new ones.
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Known Minimal Degree Identities

degree 1, 2: None
degree 3: Just the alternative laws
degree 4: No new ones
degree 5: [[a, b] ◦ [c, d], e] = 0, (3)

P 3(x
2)− P 3(x) ◦ x = 0, (4)

where Vx(y) := x ◦ y and P 3 is defined by

P 3 = VaVbVc + VcVaVb + VbVcVa − VbVaVc − VaVcVb − VcVbVa

degree 6:[∑
alt

{24a(b(c(de))) + 8a([b, c, d]e)− 11[a, b, [c, d, e]]}, f

]
= 0, (5)
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Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u, v] = 0, [v, u, u] = 0 give

[u, v, w] = [u, v, w]− [u+ w, v, u+ w] = ... = −[w, v, u]

and further total antisymmetry:

[u, v, w] = [v, w, u] = [w, u, v] = −[v, u, w] = −[u,w, v] = −[w, v, u]

This is an example for equivalence of a (not fully skey symmetric
3-variable ID to a 2-variable IDs.

Such IDs of degree > 3 are not systematically investigated sofar
but needed for reducing polynomials.
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Degree 3 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
n = d = 3 with repeating factors

Reductions t i e

none 54 26 28
alternative laws 33 5 28
(wu)v = ..., w > v, [wuv] = −[vuw] 30 2 28
(wu)v = ..., u ≥ v, [wuv] = +[uvw] 29 1 28
(wu)v = ..., w ≥ u, [wuv] = +[vwu] 28 0 28

The 26 identities included permutations of non-(skew)symmetric
identities.

e=28=const. → All terms dropped from P were redundant.

Finally i = 0 → All redundant terms from P were dropped.

List of used identities is necessary and sufficient for this purpose.
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Degree 4 Minimal General Polynomials

Identities satisfied by Moufang loops (Ruth Moufang 1935) [1]

z(x(zy)) = ((zx)z)y

x(z(yz)) = ((xz)y)z

(zx)(yz) = (z(xy))z

(zx)(yz) = z((xy)z)

Equivalent formulations in terms of associators:

w[u, v, w] = [u, vu, w] = [u, v, wu]

[u, v, w]u = [u, uv, w] = [u, v, uw]
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Reverse Polynomials

Lemma: If P is a polynomial of octonion variables vanishing
identically P = 0 then the reverse polynomial R(P ) vanishes too,
R(P ) = 0.
Example:

0 = (v[z, u, w] + [u, v, wz]){v,z}
0 = ([zw, v, u] + [w, u, z]v){v,z}

are equivalent to

0 = [u, v, wz]{u,w}{v,z}

modulo anti-symmetry of associators despite being the result of
another symmetrization.
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An Identity for General Non-associative Algebras

Qualitatively different:
Associator identity not using alternating property, valid for any
non-associative algebra

0 = u[v, w, z]− [uv, w, z] + [u, vw, z]− [u, v, wz] + [u, v, w]z

Not useful to remove terms but for manual proofs

Palindrome identity after u ↔ z, y ↔ w.
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Degree 4 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
Example: n = d = 4 multilinear case

Reductions t i e

none 120 88 32
(wu)v = ..., w > v, [wuv] = −[vuw] 72 40 32
(wu)v = ..., u ≥ v, [wuv] = +[uvw] 56 24 32
(wu)v = ..., w ≥ u, [wuv] = +[vwu] 40 8 32
(uv)(wx) = ..., v ≥ x, 0 = [u, v, wz]{v,w}{u,z} 32 0 32
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Degree 4 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
Example: n = d = 4 repeating factors

Reductions t i e

none 1280 992 288
alternative laws 784 496 288
identity in 2 factor products 712 424 288
(wu)v = ..., w > v, [wuv] = −[vuw] 520 232 288
(wu)v = ..., u ≥ v, [wuv] = +[uvw] 432 144 288
(wu)v = ..., w ≥ u, [wuv] = +[vwu] 344 56 288
(uv)(wx) = ..., v ≥ x, 0 = [u, v, wz]{v,w}{u,z} 288 0 288
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Degree 5 Minimal General Polynomials I

Reductions require all identities, not only alternative laws.
Example: n = d = 5 multiliear polynomial

Reductions t i e

none 1680 1530 150
(wu)v = ..., w > v, [wuv] = −[vuw] 790 640 150
(wu)v = ..., u ≥ v, [wuv] = +[uvw] 525 375 150
(wu)v = ..., w ≥ u, [wuv] = +[vwu] 330 180 150
(uv)(wx) = ..., v ≥ x, 0 = [u, v, wz]{v,w}{u,z} 226 76 150
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Degree 5 Minimal General Polynomials II

n = d = 5 multiliear polynomial

Reductions t i e

(pr)(u(qs)) = ..., p < q, r < s
0 = ([pr(u(qs))]− p(r[uqs])){pq}{rs} 211 61 150

0 = [p, real of degree 4] 186 36 150
(rp)((qs)u) = ..., p < q, r < s
0 = (−(rp)[qsu] + p(r[qsu])− (ps)[rqu] + s(p[rqu])){pq} 170 20 150

(pr)(q(su)) = ..., p < q, q < r, r < s
0 = (+[pr(q(su))] + [pr(u(sq))]

−[pr(s(qu))] + p(r[qus]))){pq}{rs} 169 19 150

(pr)((sq)u) = ..., p < q, q < r
0 = (−[pr((sq)u)] + [pr(q(su))] + p(u[rsq])

−u[(pq)rs] + u(p[qrs])){pq} 167 17 150
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Degree 5 Minimal General Polynomials III

n = d = 5 multiliear polynomial

Reductions t i e

(pr)((qs)u) = ..., p < q < r < s < u
0 = (−[pr(s(qu))] + [pr((qs)u)] + p(u[rsq])− u[pr(qs)]){pq} 166 16 150

(qr)((ps)u), (qr)(u(ps)), (qr)(s(up)), based on 6 longer
(qr)(s(pu)), (qs)(u(pr)), (qu)(r(sp)) identities 160 10 150
p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(qs))), p(u(q(sr)))
p(u(r(sq))), p(s(u(qr))), q(r(p(su))), q(r(s(pu))), q(r(u(ps)))
0 = (q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr))))[uq]{qrs} 150 0 150

Last reduction uses 10 identities each with 36 terms ∗(∗(∗(∗∗))):

0 =
(
q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr)))

)
[uq]{qrs}

0 =
(
q(r(u(ps))) + r(u(s(qp))) + u(q(p(sr)))

)
[ps]{qrs}

Only left multiplications, associativity does not matter,
valid for any non-associative algebra
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Degree 4 Central Multilinear Polynomials

Apart from the known [a, b] ◦ [c, d] also this is real:
+p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp))

−p(q(sr))− p(r(sq))− s(r(pq))− s(q(pr))

−q(p(rs))− r(p(qs))− r(s(qp))− q(s(rp))

+q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr))

= +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp])

−q(p[rs])− r(p[qs])− r(s[qp])− q(s[rp])
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Degree 4 Central Multilinear Polynomials continued

Similarly to
(
p(q(rs))

)
[p,q],[rs],{q,r}{p,s}

also
(
p(q(rs))

)
[p,q],[rs],{p,r}{q,s}

is a different real deree 4 polynomial.

Commutators of the 3 real polynomials with any octonion result
in a total of 25 identities of degree 5 (table above).

Changing p(q(rs)) to ((pq)r)s, (pq)(rs), (p(qr))s, p((qr)s)
does not give new real polynomials.
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General

CA systems know non-commutativity but not
non-associativity.

Why not using existing packages, like ’DifferentialGeometry’
in Maple?

Total ordering of octonion products needed to define leading
terms of IDs to reduce P .

How to avoid the extremely time-costly splitting of
polynomials with, e.g. 250 million terms?

How to lower cubic cost of solving lin. alg. system with 105

equations?
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Algorithmic Changes

For each row in the tables do not do 1 run but a sequencee of
them. Start with smaller number of components than 8n and
increase it successively.

After each run update relations between coeffs in P .

For multilinear P , when adding more new components to an
octonian variable for the next run, set the other components
of the variable temporarily to zero.

Fine tune the number of new components per run.
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Implementation

Question: How can one do computations in a computer
algebra system that does not know about non-associative
variables and always simplifies (ab)c− a(bc) = 0 ?

Answer: Label each product of octonions by a number and
consider each product having 2 factors, i.e. each number
refers to 2 numbers, its first and second factor.

This also provides a total ordering of all terms which is
needed when using identities to remove terms from P .
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General Procedure I

Formulate most general polynomial P for given d, v. Use
known octonion identities of lower degree to remove terms in
the ansatz for P that could be eliminated by those identities.
Iterate

When formulating P use known relations between the undetermined
coefficients, initially none.
Expand all octonions in terms of their 8 components (initially less
later increasingly more) to get in the last run τ terms.
Split the expanded P wrt. the 8 ei and the (max. c) components.
Solve the homogeneaous linear algebraic system P = 0 for the
unknown coefficients and substitute the solution into P .
Append the list of known relations between the coefficients of P .

until P ≡ 0 or each octonion had 8 components in the last
run.
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General Procedure II

For each free coefficient ci in the general solution of P = 0
print the coefficient of ci in P which is an identically vanishing
polynomial in octonion variables. There are many identities,
each can have 10s to 100s of terms and may have no symmetry
because any linear combination of identities is an identity.

Pick the shortest identity, add it in a list of identities and
identify the leading term (product) in this identity.

Formulate a pattern rule to identify this leading term and
similar leading terms from similar identities after
permutations of varibles.

Set the coefficients of these terms in the general ansatz for P
to zero and repeat the whole procedure.

Repeat the whole process until P is identically zero.
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Discussion

We do not stop after the first run and use all computed
identities because we would not be sure whether the leading
terms of these identities are independent of each other
because we do not only want an (ugly, non-intelligent) list of
all identities but we want a complete, necessary and sufficient
set of substitution rules to be usable to simplify a general P
in applications when P = L or P = M .

If at any stage a very short identity results that is
compactifyable due to its (anti-)symmetry then start from
scratch with this being the first used identity to reduce P . As
a result, the identities in the final list will be shorter, more
symmetric and easier to understand.
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Implementation Issues II

A first implementation as a Pascal program to generate the
most general ansatz of a quaternion or octonion polynomial
modulo known identities for degreee 3 and 4 is highly efficient
and was used for the work reported by Philic Lam. This
program does not have to expand octonions in terms of their
components and is therefore not capabale to compute or
verify identities.

The first program used to do that, the Maple module
’DifferentialGeometry’ evaluating a degree 4 polynomial with
1280 terms had to be stopped after 6 days.

An implementation from scratch in the computer algebra
system Reduce was able to perform such a computation in
about 2 hours which is progress but still too slow for deriving
degreee 5 identities with 100 times as many terms (55 million)
and an even higher factor of computation time.
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Implementation Issues III

The computer algebra system Reduce has an internal total
ordering of all variables. A polynomial is stored as a
polynomial in the leading variables with coefficients being
polynomials in the 2nd variable and so on recursively. After
computing the expanded P one wants to split with respect to
ei and the with respect to components ui. If variables ci
would have a high priority then this splitting would be an
exponentially slow process for large expressions. By giving ei
highest priority and ci lowest priority, the splitting process
has only linear complexity and is extremely fast.
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Efficiency Measures I

Starting with a smaller number of components, i.e. less than
8× v, and setting the other components to 0 and thus deriving
just some dependencies between coefficients ci, the total
number of terms of the expanded P is even increasing because
terms of P do not have a single ci as coefficient anymore but a
whole linear sum of them. But there still is a benefit. As
octonion terms in P are expanded and added one by one to
P , they start to cancel as the identities vanish identically.
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Efficiency Measures II

When gradually increasing the number of non-zero
components of one octonion variable u then for multilinear P
in the next loop the already non-zero investigated components
uj can be set to zero because due to linearity of P in u the
new non-zero components do not interfere with the new
non-zero components. This reduces the efford by a factor of 8.
Important is a good balance between on one hand breaking
up the whole computation into many small increases in the
number of non-zero components in order to gather as many as
possible zero ci and relations between non-zero ci before the
last loop with the most terms and on the other hand keeping
redundancy low by computing many times P that does ot
provide new information on the cj. For example, for n = d = 5
a good strategy is to start with 14 randomly selected non-zero
components and then in the next loops to add 7,6,5,4,3,2,2,...
new non-zero components until the maximum 40 is reached.
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Efficiency Measures III

The extreme version of breaking up computation would be to
go through all 8d combinations of each octonion variable
having only 1 component. The number of terms at any time
would then be only t and not τ . But computing ans splitting
P and solving the resulting conditions 8d times involves too
much redundancy ans is too slow, although it solves any
memory problems. This would be beneficial under parallel
execution.
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Correctness

Question: Why are not all i identities obtained after the first run,
used at once to drop i terms from the general polynomial P?

Answer: One purpose is to avoid dropping terms that prevent the
same identity. This goal is achieved if the number e of essential
terms in P is unchanged after each run, i.e. after dropping the
next term(s) from P .

Another purpose is to get identities in their shortest, most
symmetric and thus compactifyable form.
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next term(s) from P .

Another purpose is to get identities in their shortest, most
symmetric and thus compactifyable form.
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Summary

We obtained

minimal general octonion polynomials multilinear and with
repeating factors, both cases for degree 3, 4, 5

new compact multilinear vanishing identities and central
polynomials of degree 4, 5,

term dropping rules applicable also to higher degree
polynomials

efficient algorithms for computations with octonions

insight into using reverse multiplication to formulate new
types of symmetries (multifactor and non-associative
generalizations of the commutator and the Jordan product)
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The End

Thank you!
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