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@ Introduction
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About Lax Pairs

e An evolution equation u; = F'(u, gy, Ugy, - .. ) is said to be
integrable if it has a Lax Pair L and M that are linear differential
operators in terms of 0, with coefficients in u, u,, uz,, .. satisfying

L, =[M,L]

identically in all u, ug, Ugy, .. iff ug = F.
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About Lax Pairs

e An evolution equation u; = F'(u, gy, Ugy, - .. ) is said to be
integrable if it has a Lax Pair L and M that are linear differential
operators in terms of 0, with coefficients in u, u,, uz,, .. satisfying

L, =[M,L]
identically in all u, ug, Ugy, .. iff ug = F.

e Lax pair is used in the inverse scattering transform to generate
multi-soliton solutions which have many physical applications.
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About Lax Pairs

e An evolution equation u; = F'(u, gy, Ugy, - .. ) is said to be
integrable if it has a Lax Pair L and M that are linear differential
operators in terms of 0, with coefficients in u, u,, uz,, .. satisfying

L, =[M,L]

identically in all u, ug, Ugy, .. iff ug = F.
e Lax pair is used in the inverse scattering transform to generate
multi-soliton solutions which have many physical applications.
e Two well known examples:

Up = Uly + Uyzy Korteweg-De Vries (KdV) equation
L=02+ u, M = 403 + ud, + tu, (w(L) = 2)

ur = u?Uy 4 Ugyy modified Korteweg-De Vries (mKdV) equation
L=0;+u, M = —ug, — %u?’ (w(L)=1)
L=02+2u0, + v +uy, M=—ug, — su® (w(L) =2)
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About Octonions I

e Cayley-Dickson construction: real, complex, quaternions,
octonions, sedenions,... by introducing 1 new imaginary number
each time
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About Octonions I

e Cayley-Dickson construction: real, complex, quaternions,
octonions, sedenions,... by introducing 1 new imaginary number
each time

e 8-dimensional algebra formed by 1 real and 7 imaginary basis
elements
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About Octonions I

e Cayley-Dickson construction: real, complex, quaternions,
octonions, sedenions,... by introducing 1 new imaginary number
each time

e 8-dimensional algebra formed by 1 real and 7 imaginary basis
elements

e normed division algebra over the real numbers
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About Octonions I1I

@ noncommutative, nonassociative
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About Octonions I1I

@ noncommutative, nonassociative

e but e

alternative: x(zy) = (zx)y, (yr)r = y(zx),
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About Octonions I1I

@ noncommutative, nonassociative

e but @

alternative: x(zy) = (zx)y, (yr)r = y(zx),
as a consequence the

associator [x,y, z] := (zy)z — x(yz)

satisfies

[z, 2, y] = [y, 2, 2] =0

and as a consequence of that also

[x,y,z] = 0.
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Applications of Octonions

e appear in attempts to understand and extend the Standard Model
of elementary particle physics and string theory C. Furey, Phys.
Rev. D 86, 025024 (2012); T.P.Singh, Z.Naturforsch. A 75, 1051 (2020)
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Applications of Octonions

e appear in attempts to understand and extend the Standard Model
of elementary particle physics and string theory C. Furey, Phys.
Rev. D 86, 025024 (2012); T.P.Singh, Z.Naturforsch. A 75, 1051 (2020)

e other applications in quantum logic, special relativity and
supersymmetry
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Applications of Octonions

e appear in attempts to understand and extend the Standard Model
of elementary particle physics and string theory C. Furey, Phys.
Rev. D 86, 025024 (2012); T.P.Singh, Z.Naturforsch. A 75, 1051 (2020)

e other applications in quantum logic, special relativity and
supersymmetry John C. Baez https://arxiv.org/abs/math/0105155
(2002)

e little literature exists on specific integrable evolution equations
over octonions A. Restuccia, A. Sotomayor, J.P. Veiro,
arXiv:1609.05410v1 [math-ph] (2016)
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Goal

o Integrable scalar evolution equations have been extended to
multi-component (coupled) evolution equations (e.g. over vectors,
matrices, Lie algebras, graded algebras).
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Goal

o Integrable scalar evolution equations have been extended to
multi-component (coupled) evolution equations (e.g. over vectors,
matrices, Lie algebras, graded algebras).

e This project: Integrable evolution equations over the octonions
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Goal

o Integrable scalar evolution equations have been extended to
multi-component (coupled) evolution equations (e.g. over vectors,
matrices, Lie algebras, graded algebras).

e This project: Integrable evolution equations over the octonions

e Start with KdV and mKdV type that have a Lax pair
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Goal

o Integrable scalar evolution equations have been extended to
multi-component (coupled) evolution equations (e.g. over vectors,
matrices, Lie algebras, graded algebras).

e This project: Integrable evolution equations over the octonions
e Start with KdV and mKdV type that have a Lax pair

o Later goal: Classification
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© Outline of Method
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General Idea

e Select weights for 9, 0., u, L,
e.g. KdV-scaling: w(0;) = 3, w(d,) = 1, w(u) = 2, and start with
w(L) =2
— w(M) =w(L) —w(L)
)

— w(F)=w(u)+w(d) =5
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General Idea

e Select weights for 9, 0., u, L,
e.g. KdV-scaling: w(0;) = 3, w(d,) = 1, w(u) = 2, and start with
w(L) =2
— w(M)=w(L) —w(L) =w(0) =3
— w(F) =w(u) +w(d) =5

e Make general homogenous polynomial ansatz for F(= u;), L, M
with undetermined constant coefficients f;,1;,m; and octonion
variables u, ua, Ugy, ...
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— w(M)=w(L) —w(L) =w(0) =3
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with undetermined constant coefficients f;,1;,m; and octonion
variables u, ua, Ugy, ...
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General Idea

Select weights for 0y, 0, u, L,

e.g. KdV-scaling: w(0;) = 3, w(d,) = 1, w(u) = 2, and start with
w(L) =2

— w(M) =w(L) —w(L) =w(d) =3

— w(F)=w(u)+w(d) =5

e Make general homogenous polynomial ansatz for F(= u;), L, M
with undetermined constant coefficients f;,1;,m; and octonion
variables u, ua, Ugy, ...

Split wrt. u, Uy, Ugg, -
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General Idea

e Select weights for 9, 0., u, L,
e.g. KdV-scaling: w(0;) = 3, w(d,) = 1, w(u) = 2, and start with
w(L) =2
— w(M)=w(L) —w(L) =w(0) =3
— w(F) =w(u) +w(d) =5

e Make general homogenous polynomial ansatz for F(= u;), L, M
with undetermined constant coefficients f;,1;,m; and octonion
variables u, ua, Ugy, ...

o Split wrt. u, Uy, Ugg, ...

@ Solve the overdetermined non-linear polynomial system for
unknown coefficients f;,[;, m; to obtain the integrable equation
u; = F and Lax pair L, M.
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Adapting to Non-commutativity and Non-Associativity

Instead of linear differential operators L, M

e Introduce zero weight G(z)
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Adapting to Non-commutativity and Non-Associativity

Instead of linear differential operators L, M
e Introduce zero weight G(z)

e Make polynomial ansatz for LG, MG, linear homogeneous in
G,Gyg, ...
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Adapting to Non-commutativity and Non-Associativity

Instead of linear differential operators L, M
e Introduce zero weight G(z)

e Make polynomial ansatz for LG, MG, linear homogeneous in
G,Gyg, ...

e Instead of L;G = [M, L|G formulate (LG); = M(LG) — L(MG).
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Adapting to Non-commutativity and Non-Associativity
O . .

Instead of linear differential operators L, M

e Introduce zero weight G(z)

Make polynomial ansatz for LG, M G, linear homogeneous in
G,Gyg, ...

Instead of L;G = [M, L|G formulate (LG); = M(LG) — L(MG).
To compute (LG); replace uy = F, wu, = dF/dz, ...
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Instead of linear differential operators L, M
e Introduce zero weight G(z)

e Make polynomial ansatz for LG, MG, linear homogeneous in
G,Gyg, ...

e Instead of L;G = [M, L|G formulate (LG); = M(LG) — L(MG).

e To compute (LG); replace uy = F, wu, = dF/dz, ...

e To compute M (LG) replace in MG each G, Gy, .. 'in place’ by
LG, (LG)g, ...

e To compute L(MG@G) replace in LG each G, G, .. 'in place’ by
MG, (MQ)g, ...
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KdV Example

KdV-scaling: w(0;) = 3, w(0,) =1, w(u) = 2, try w(LG) = w(L) =2
— w(F) =w(u) +w(0) =5
— w(MG) =w(M) =w(0;) =3

F = flummm + fQUUw + f3umu

MG = m1Greyr +maGru 4+ mauGy + maGug + msuz G
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KdV Example

KdV-scaling: w(0;) = 3, w(0,) =1, w(u) = 2, try w(LG) = w(L) =2
— w(F) =w(u) +w(0) =5
— w(MG) =w(M) =w(0;) =3

F = flumxm + fQUUw + f3umu
LG = 11Gyy + 5Gu + l3uG
MG = m1Greyr +maGru 4+ mauGy + maGug + msuz G
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KdV Example

KdV-scaling: w(0;) = 3, w(0,) =1, w(u) = 2, try w(LG) = w(L) =2
— w(F) =w(u) +w(0) =5
— w(MG) =w(M) =w(0;) =3

F = flummm + fQUUw + f3umu
LG = 11Gyy + 5Gu + l3uG
MG = m1Greyr +maGru 4+ mauGy + maGug + msuz G

(LG)t = LGF +13FG
L(]WG) = ll(]VfG)xx + lg(]wG)u + lgu(]V[G)
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KdV Example

KdV-scaling: w(0;) = 3, w(0,) =1, w(u) = 2, try w(LG) = w(L) =2
— w(F) =w(u) +w(0) =5
— w(MG) =w(M) =w(0;) =3

F = fiugee + fouug + fauzu
LG = U1Gu+ LbGu+ lsuG
MG = m1Greyr +maGru 4+ mauGy + maGug + msuz G
(LG)y = LGF+I13FG
LIMG) = L(MG)gp+ la(MG)u+ lsu(MG)
M(LG) = miy(LG)zas +ma(LG)gu+ mau(LC)s +

m4(LO)ux + m5u$(L(J)
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KdV Example

KdV-scaling: w(0;) = 3, w(0,) =1, w(u) = 2, try w(LG) = w(L) =2
— w(F) =w(u) +w(0) =5
— w(MG) =w(M) =w(0;) =3

F = fiugee + fouug + fauau
LG = U1Gu+ LbGu+ lsuG
MG = miGrpy +moGru + mauGy + maGuy + msu, G
(LG): = bLGF+13FG
LIMG) = L(MG)gy +1(MG)u+ l3u(MG)
M(LG) = mi(LG)gze +mo(LG)gu 4+ mau( LGy +

m4(LG')ux + m5u$(LO)

Problem: For high w(9;),w(L) and low w(9;), w(u) the number of
terms goes into the (10s of) 1000s
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Adapting to Identities for Octonions

Spliting wrt. u, Uy, Uz, ... 1S t00 restrictive because of
polynomial identities of octonions, like
0 = (wu)v — w(uv) + (vu)w — v(uw)
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Adapting to Identities for Octonions

Spliting wrt. u, Uy, Uz, ... 1S t00 restrictive because of
polynomial identities of octonions, like
0 = (wu)v — w(uww) + (vu)w — v(uw)

Instead

e Replace u, ug, .. by their component form u = ZZ:O ui(x,t)eg, ...

| SO P50 s TS T W s Teto T AN /cY S SR 23 WoYel ' MBBEY A hout Integrable Evolution Equations July 1-5, 2024 12 /53




Adapting to Identities for Octonions

Spliting wrt. u, Uy, Uz, ... 1S t00 restrictive because of
polynomial identities of octonions, like
0 = (wu)v — w(uww) + (vu)w — v(uw)

Instead
e Replace u, ug, .. by their component form u = ZZ:O ui(x,t)eg, ...

o Split wrt. e;, U;, Uy, ---
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Adapting to Identities for Octonions

Spliting wrt. u, Uy, Uz, ... 1S t00 restrictive because of
polynomial identities of octonions, like
0 = (wu)v — w(uww) + (vu)w — v(uw)

Instead
e Replace u, ug, .. by their component form u = ZZ:O ui(x,t)eg, ...

o Split wrt. e;, U;, Uy, ---

Consequences:
o Huge computational cost,

@ A new necessary research project:
Find and use all octonion identities
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@ Octonion Identities
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Outline

@ Motivation
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Algebraic Challenges

e Is a given octonion polynomial identically zero?
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Algebraic Challenges

e Is a given octonion polynomial identically zero?

e How to simplify an octonion polynomial?
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Algebraic Challenges

e Is a given octonion polynomial identically zero?
e How to simplify an octonion polynomial?

e How to decide ideal membership?
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Algebraic Challenges

Is a given octonion polynomial identically zero?

e How to simplify an octonion polynomial?

How to decide ideal membership?

e Find all identically vanishing polynomials up to some degree.
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Algebraic Challenges

Is a given octonion polynomial identically zero?

e How to simplify an octonion polynomial?

How to decide ideal membership?
e Find all identically vanishing polynomials up to some degree.

e Find all central (real) polynomials up to some degree.
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(5 ) Computing Idendities
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Vanishing Identities P = 0

Outline

e Formulate a general polynomial P of degree d in n octonion
variables u, .. with undetermined coefficients ¢
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Vanishing Identities P = 0

Outline

e Formulate a general polynomial P of degree d in n octonion
variables u, .. with undetermined coefficients ¢

e Replace variables by their component form, e.g. u = ZLO Ui€;
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Vanishing Identities P = 0

Outline

e Formulate a general polynomial P of degree d in n octonion
variables u, .. with undetermined coefficients ¢

e Replace variables by their component form, e.g. u = ZLO Ui€;

e Split P =0 w.r.t. e;,u, ...
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Vanishing Identities P = 0

Outline

e Formulate a general polynomial P of degree d in n octonion
variables u, .. with undetermined coefficients ¢

e Replace variables by their component form, e.g. u = ZLO Ui€;
e Split P =0 w.r.t. e;,u, ...

@ Solve the linear system for the undetermined coefficients cg
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Vanishing Identities P = 0

Outline

e Formulate a general polynomial P of degree d in n octonion
variables u, .. with undetermined coefficients ¢y

e Replace variables by their component form, e.g. u = ZLO Ui€;
e Split P =0 w.r.t. e;,u, ...
@ Solve the linear system for the undetermined coefficients cg

@ Substitute general solution into P
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Vanishing Identities P = 0

Outline

e Formulate a general polynomial P of degree d in n octonion
variables u, .. with undetermined coefficients ¢y

Replace variables by their component form, e.g. u = ZLO Ui€;
Split P =0 w.r.t. e;, uy, ...

Solve the linear system for the undetermined coefficients ¢

@ Substitute general solution into P

Get all IDs (identities) as coefficients of free parameters in P

IS DF:0 TS FIL G sYeTo T Y, Y/0) S S = 3YeYe "B \ hout Integrable Evolution Equations July 1-5, 2024 17 /53



Vanishing Identities P = 0

Outline

Formulate a general polynomial P of degree d in n octonion
variables u, .. with undetermined coefficients ¢y

Replace variables by their component form, e.g. u = 22.7:0 Ui€;
Split P =0 w.r.t. e;, uy, ...

Solve the linear system for the undetermined coefficients ¢
Substitute general solution into P

Get all IDs (identities) as coefficients of free parameters in P

Find linear combinations of identities and permutations of them
that are short, highly symmetric to allow a compact formulation.
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)
d = degree of polynomial P(u,v,..) (in the application P = L, M)
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = 25;11 m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)
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The Computational Complexity of Multilinearity

n =

number of octonion variables u,v,w.. (in application u, u,, ua,, ..)
d =

degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = 25;11 m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : d! x m(d) (multilinearity)
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = 25;11 m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : d! x m(d) (multilinearity)

T = # of terms of P in expanded form = ¢ x 8¢
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = 25;11 m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : d! x m(d) (multilinearity)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = 25;11 m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : d! x m(d) (multilinearity)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : d! x m(d) (multilinearity)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

i = # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z
d=n | 1 2 3 4 5 6 7 8
m 1 1 2 5 14 42 132 429
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

= # of terms of P : d! x m(d) (multilinearity)

= # of terms of P in expanded form = ¢ x 8¢

= # of real/imag. components of all octonion variables = 8n

= # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

e B

d=n |1 2 3 4 5 [§ 7 8
m 1 1 2 5 14 42 132 429
t 1 2 12 120 1680 30240 6.65 x 10° 1.69 x 107
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

= # of terms of P : d! x m(d) (multilinearity)

= # of terms of P in expanded form = ¢ x 8¢

= # of real/imag. components of all octonion variables = 8n

= # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

e B

d=n ] 1 2 3 4 5 6 7 8
m 1 1 2 5 14 42 132 429
t 1 2 12 120 1680 30240 | 6.65 x 10° 1.69 x 107
T 8 | 128 | 6140 | 491520 | 55 x 10% | 7.9 x 109 | 1.39 x 1012 | 2.84 x 101%
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

= # of terms of P : d! x m(d) (multilinearity)

= # of terms of P in expanded form = ¢ x 8¢

= # of real/imag. components of all octonion variables = 8n

= # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

e B

d=n ] 1 2 3 4 5 6 7 8
m 1 1 2 5 14 42 132 429
t 1 2 12 120 1680 30240 6.65 x 10° 1.69 x 107
T 8 | 128 | 6140 | 491520 | 55 x 10% | 7.9 x 109 | 1.39 x 1012 | 2.84 x 101%
c 8 16 24 32 40 48 56 64
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

= # of terms of P : d! x m(d) (multilinearity)

= # of terms of P in expanded form = ¢ x 8¢

= # of real/imag. components of all octonion variables = 8n

= # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

e B

d=n ] 1 2 3 4 5 6 7 8
m 1 1 2 5 14 42 132 429
t 1 2 12 120 1680 30240 6.65 x 10° 1.69 x 107
T 8 | 128 | 6140 | 491520 | 55 x 10% | 7.9 x 109 | 1.39 x 1012 | 2.84 x 101%
c 8 16 24 32 40 48 56 64
i 0 0
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

= # of terms of P : d! x m(d) (multilinearity)

= # of terms of P in expanded form = ¢ x 8¢

= # of real/imag. components of all octonion variables = 8n

= # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

e B

d=n ] 1 2 3 4 5 6 7 8
m 1 1 2 5 14 42 132 429
t 1 2 12 120 1680 30240 6.65 x 10° 1.69 x 107
T 8 | 128 | 6140 | 491520 | 55 x 10% | 7.9 x 109 | 1.39 x 1012 | 2.84 x 101%
c 8 16 24 32 40 48 56 64
i 0 0 5
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

= # of terms of P : d! x m(d) (multilinearity)

= # of terms of P in expanded form = ¢ x 8¢

= # of real/imag. components of all octonion variables = 8n

= # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

e B

d=n ] 1 2 3 4 5 6 7 8
m 1 1 2 5 14 42 132 429
t 1 2 12 120 1680 30240 6.65 x 10° 1.69 x 107
T 8 | 128 | 6140 | 491520 | 55 x 10% | 7.9 x 109 | 1.39 x 1012 | 2.84 x 101%
c 8 16 24 32 40 48 56 64
i 0 0 5 88
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

= # of terms of P : d! x m(d) (multilinearity)

= # of terms of P in expanded form = ¢ x 8¢

= # of real/imag. components of all octonion variables = 8n

= # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

e B

d=n ] 1 2 3 4 5 6 7 8
m 1 1 2 5 14 42 132 429
t 1 2 12 120 1680 30240 6.65 x 10° 1.69 x 107
T 8 | 128 | 6140 | 491520 | 55 x 10% | 7.9 x 109 | 1.39 x 1012 | 2.84 x 101%
c 8 16 24 32 40 48 56 64
i 0 0 5 88 1530
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, U, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d —i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

= # of terms of P : d! x m(d) (multilinearity)

= # of terms of P in expanded form = ¢ x 8¢

= # of real/imag. components of all octonion variables = 8n

= # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

e B

d=n ] 1 2 3 4 5 6 7 8
m 1 1 2 5 14 42 132 429
t 1 2 12 120 1680 30240 6.65 x 10° 1.69 x 107
T 8 | 128 | 6140 | 491520 | 55 x 10% | 7.9 x 109 | 1.39 x 1012 | 2.84 x 101%
c 8 16 24 32 40 48 56 64
i 0 0 5 88 1530 ? ? ?
e 1 2 7 32 150 ? ? ?
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)
d = degree of polynomial P(u,v,..) (in the application P = L, M)
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)
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The Computational Complexity of Repeating Factors

n =

d:

number of octonion variables u, v, w.. (in application u, us, uaz, ..)

degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

d=n |1 2 3 4 5 6
m 1 1 2 5 14 42
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

d=n | 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95 x 10°
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

d=n |1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95 x 10°
T 8 | 256 | 9213 | 5.24 x 10% | 1.4336 x 107 | 5.13 x 10T
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

d=n |1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95 x 10°
T 8 | 256 | 9213 | 5.24 x 10% | 1.4336 x 107 | 5.13 x 10T
c 8 16 24 32 40 48
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

d=n |1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95 x 10°
T 8 | 256 | 9213 | 5.24 x 10% | 1.4336 x 107 | 5.13 x 10T
c 8 16 24 32 40 48
i 0 0
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

d=n |1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95 x 10°
T 8 | 256 | 9213 | 5.24 x 10% | 1.4336 x 107 | 5.13 x 10T
c 8 16 24 32 40 48
i 0 0 26
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

d=n |1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95 x 10°
T 8 | 256 | 9213 | 5.24 x 10% | 1.4336 x 107 | 5.13 x 10T
c 8 16 24 32 40 48
i 0 0 26 992
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf:_ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

d=n |1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95 x 10°
T 8 | 256 | 9213 | 5.24 x 10% | 1.4336 x 107 | 5.13 x 10T
c 8 16 24 32 40 48
i 0 0 26 992 40375

IS DE:D TS TRL S sYelo T Y, Y/0) S S =3 ¥eYe "B \ hout Integrable Evolution Equations July 1-5, 2024 19 /53




The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application w, uy, uag, ..)

d = degree of polynomial P(u,v,..) (in the application P = L, M)

m= # of different ways to non-associative multiply the d factors of 1 term,
m(1) =1, m(d) = Zf;ll m(i) x m(d — i) (recursive formula summing
over all d — 1 options for the last of the d — 1 multiplications)

t = # of terms of P : n? x m(d) (factors may repeat)

T = # of terms of P in expanded form = ¢ x 8¢

¢ = # of real/imag. components of all octonion variables = 8n

1 = # of identities = # of free coeff. in general solution of P =0

e = # of essential terms in P which is ¢t — z

d=n |1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95 x 10°
T 8 | 256 | 9213 | 5.24 x 10% | 1.4336 x 107 | 5.13 x 10T
c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?
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Central Polynomials

A polynomial P = P(x,y,...) is a central polynomial if P is real for

any octonion variables x,y, ... and thus commutes with any other
octonian variable u:

[P,u] =0
and thus also satisfies the vanishing identity
[P, u,v] = (Pv)w — P(vw) = P(vw) — P(vw) =0

for any octonions u, v.
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Central Polynomials

A polynomial P = P(x,y,...) is a central polynomial if P is real for
any octonion variables x,y, ... and thus commutes with any other
octonian variable u:

[P,u] =0
and thus also satisfies the vanishing identity
[P, u,v] = (Pv)w — P(vw) = P(vw) — P(vw) =0
for any octonions u, v.

Same procedure to compute them, only ignore coefficient of ey after
splitting w.r.t. e;.
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Outline

@ Known Polynomials
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Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4],
Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None
degree 4: [a, b] o [c, d], (1)

where z oy := zy + yx,
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Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4],
Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4: [a, b] o [c, d], (1)

where z oy := zy + yx,

degree 5: 2{24CL + 80/([17 C, d} ) — 11[@, b, [C, d, 6]]}, (2)
alt

where ) is the alternating sum over the arguments.
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Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4],
Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4: [a, b] o [c, d], (1)

where x oy := xy + yx,

degree 5: 2{24CL + 80/([17 C, d} ) — 11[@, b, [C, d, 6]]}, (2)
alt

where ) is the alternating sum over the arguments.

degree 6: No new ones.
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Known Minimal Degree Identities

degree 1, 2: None
degree 3: Just the alternative laws
degree 4: No new ones

degree 5: [[a,b] o [c,d],e] =0, (3)
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Known Minimal Degree Identities

degree 1, 2: None

degree 3: Just the alternative laws
degree 4: No new ones

degree 5: [[a,b] o [¢, d], e] =0, (3)

P3($2) — ?3(50) oxr = 0, (4)
where V,(y) := x oy and Pj is defined by

Py = VoW Ve + VeVo Vi + ViVeVo = Vo Ve = Vo Ve, — Vi Vs,
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Known Minimal Degree Identities

degree 1, 2: None
degree 3: Just the alternative laws
degree 4: No new ones

degree 5: [[a,b] o [¢, d], e] =0, (3)

P3(2?) — P3(z) oz =0, (4)
where V,(y) := x oy and Pj is defined by

Py = VoW Ve + VeVo Vi + ViVeVo = Vo Ve = Vo Ve, — Vi Vs,

degree 6:

Z{24a(b(c(de))) + 8a([b,c,d]e) — 11[a, b, [c,d, €]}, f| =0, (5)

alt
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Outline

@ All Polynomials
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Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u,v] = 0, [v,u,u] = 0 give
[u, v, w] = [u,v,w| — [u+w,v,u+w = ... = —[w,v,u]
and further total antisymmetry:

[u, v, w] = [v,w,u] = [w,u,v] = —[v,u, w| = —[u,w,v] = —[w, v, u]
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Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u,v] = 0, [v,u,u] = 0 give
[u, v, w] = [u,v,w] — [u+w,v,u+w] = ... = —[w, v, u
and further total antisymmetry:
[u, v, w] = [v,w,u] = [w,u,v] = —[v,u, w| = —[u,w,v] = —[w, v, u]

This is an example for equivalence of a (not fully skey symmetric
3-variable ID to a 2-variable IDs.
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Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u,v] = 0, [v,u,u] = 0 give
[u, v, w] = [u,v,w] — [u+w,v,u+w] = ... = —[w, v, u
and further total antisymmetry:
[u, v, w] = [v,w,u] = [w,u,v] = —[v,u, w| = —[u,w,v] = —[w, v, u]

This is an example for equivalence of a (not fully skey symmetric
3-variable ID to a 2-variable IDs.

Such IDs of degree > 3 are not systematically investigated sofar but
needed for reducing polynomials.
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Degree 3 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
n = d = 3 with repeating factors

’ Reductions ‘ t ‘ 7 ‘ e ‘
none 54 | 26 | 28
alternative laws 33| 5 |28
(wu)v = ...,w > v, [w,u,v] = —[v,u,w] | 30 | 2 | 28
(wu)v = ...,u > v, [w,u,v] = +u,v,w] |29 | 1 | 28
(wu)v = ...,w > u, [w,u,v] = +[v,w,u] | 28 | 0 | 28
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Degree 3 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
n = d = 3 with repeating factors

’ Reductions ‘ t ‘ 7 ‘ e ‘
none 54 | 26 | 28
alternative laws 33| 5 |28
(wu)v = ...,w > v, [w,u,v] = —[v,u,w] | 30 | 2 | 28
(wu)v = ...,u > v, [w,u,v] = +u,v,w] |29 | 1 | 28
(wu)v = ...,w > u, [w,u,v] = +[v,w,u] | 28 | 0 | 28

The 26 identities included permutations of non-(skew)symmetric
identities.
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Degree 3 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
n = d = 3 with repeating factors

’ Reductions ‘ t ‘ 7 ‘ e ‘
none 54 | 26 | 28
alternative laws 33| 5 |28
(wu)v = ...,w > v, [w,u,v] = —[v,u,w] | 30 | 2 | 28
(wu)v = ...,u > v, [w,u,v] = +u,v,w] |29 | 1 | 28
(wu)v = ...,w > u, [w,u,v] = +[v,w,u] | 28 | 0 | 28

The 26 identities included permutations of non-(skew)symmetric
identities.

e=28=const. — All terms dropped from P were redundant.
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Degree 3 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
n = d = 3 with repeating factors

’ Reductions ‘ t ‘ 7 ‘ e ‘
none 54 | 26 | 28
alternative laws 33| 5 |28
(wu)v = ...,w > v, [w,u,v] = —[v,u,w] | 30 | 2 | 28
(wu)v = ...,u > v, [w,u,v] = +u,v,w] |29 | 1 | 28
(wu)v = ...,w > u, [w,u,v] = +[v,w,u] | 28 | 0 | 28

The 26 identities included permutations of non-(skew)symmetric
identities.

e=28=const. — All terms dropped from P were redundant.

Finally i = 0 — All redundant terms from P were dropped.
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Degree 3 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
n = d = 3 with repeating factors

’ Reductions ‘ t ‘ 7 ‘ e ‘
none 54 | 26 | 28
alternative laws 33| 5 |28
(wu)v = ...,w > v, [w,u,v] = —[v,u,w] | 30 | 2 | 28
(wu)v = ...,u > v, [w,u,v] = +u,v,w] |29 | 1 | 28
(wu)v = ...,w > u, [w,u,v] = +[v,w,u] | 28 | 0 | 28

The 26 identities included permutations of non-(skew)symmetric
identities.

e=28=const. — All terms dropped from P were redundant.
Finally i = 0 — All redundant terms from P were dropped.

List of used identities is necessary and sufficient for this purpose.
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Degree 4 Minimal General Polynomials

Identities satisfied by Moufang loops (Ruth Moufang 1935) [1]

2x(zy)) = ((z2)2)y
2(2(yz)) = ((z2)y)z
(z2)(yz) = (2(2y))z
(z2)(yz) = 2((2y)z)
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Degree 4 Minimal General Polynomials

Identities satisfied by Moufang loops (Ruth Moufang 1935) [1]

2x(zy)) = ((z2)2)y
2(2(yz)) = ((z2)y)z
(z2)(yz) = (2(2y))z
(z2)(yz) = 2((2y)z)

Equivalent formulations in terms of associators:

wlu, v, w] = [u, vu, w] = [u, v, wul

[u, v, wlu = [u, uv, w| = [u, v, uw
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Reverse Polynomials

Lemmea: If P is a polynomial of octonion variables vanishing

identically P = 0 then the reverse polynomial R(P) vanishes too,
R(P) = 0.

Example:

(’U[Z, u, ’IU] + [U, v, wz]){v,z}

= ([rw,v,u] + [w, u, 2Jv)y,
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Reverse Polynomials

Lemmea: If P is a polynomial of octonion variables vanishing

identically P = 0 then the reverse polynomial R(P) vanishes too,
R(P) =0.
Example:

(’U[Z, u, ’IU] + [U, v, wz]){v,z}
= ([zw, v, u] + [w, u, Z]U){v,z}

are equivalent to

0 = [u’v,wz]{%w}{v,z}

modulo anti-symmetry of associators despite being the result of
another symmetrization.
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An Identity for General Non-associative Algebras

Qualitatively different:
Associator identity not using alternating property, valid for any
non-associative algebra

0 = ufv,w, z] — [uv,w, z] + [u, vw, 2| — [u, v, wz] + [u, v, w|z

Not useful to remove terms but for manual proofs
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An Identity for General Non-associative Algebras

Qualitatively different:
Associator identity not using alternating property, valid for any
non-associative algebra

0 = ufv,w, z] — [uv,w, z] + [u, vw, 2| — [u, v, wz] + [u, v, w|z

Not useful to remove terms but for manual proofs

Palindrome identity after u <> z, y <> w.
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Degree 4 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
Example: n = d = 4 multilinear case

’ Reductions \ t \ i \ e ‘
none 120 | 88 | 32
(wu)v = ..., w > v, [w,u,v] = —[v, u, W] 72 | 40 | 32
(wu)v = ...,u > v, [w,u,v] = +[u, v, w] 56 | 24 | 32
(wu)v = ...,w > u, [w,u,v] = +[v, w, ul 40 | 8 | 32
(uv)(w ) a0 22,0 = [u, v, w2l gy wi{uzy | 32 | 0 | 32
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Degree 4 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
Example: n = d = 4 repeating factors

Reductions ‘ t ‘ i ‘ e ‘
none 1280 | 992 | 288
alternative laws 784 | 496 | 288
identity in 2 factor products 712 | 424 | 288
(wu)v = ...,w > v, [w,u,v] = —[v,u, w] 520 | 232 | 288
(wu)v = ...,u > v, [w,u,v] = +[u, v, w] 432 | 144 | 288
(wu)v = ..., w > u, [w,u,v] = +[v,w, u 344 | 56 | 288
(uv)(w ) w0 22,0 = [u, v, w2l gy wyfuzy | 288 | 0 | 288
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Degree 5 Minimal General Polynomials I

Reductions require all identities, not only alternative laws.
Example: n = d = 5 multiliear polynomial

’ Reductions \ t \ i \ e ‘
none 1680 | 1530 | 150
(wu)v = ..., w > v, [w,u,v] = —[v, u, W 790 | 640 | 150
(wu)v = ...,u > v, [w,u,v] = +[u, v, w] 525 | 375 | 150
(wu)v = ...,w > u, [w,u,v] = +[v, w, u 330 | 180 | 150
(uv)(w ) o0 22,0 = [u, v, w2l gy wi{uzy | 226 | 76 | 150
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Degree 5 Minimal General Polynomials 11

n = d = 5 multiliear polynomial

’ Reductions \ t \ i \ e ‘

(pr)(u(gs)) = ...p < qr<s
0 = ([pr(u(gs))] — p(r[ugs))) (g1 (rst 211 | 61 | 150
0 = [p, real of degree 4] 186 | 36 | 150
(rp)((gs)u) = ....p < q,7 <s
0=(=(rp) [qSU} + p(rlgsul) — (ps)[rqu] + s(plrqul)) ;e | 170 | 20 | 150
(pr)(q(su)) = ...p<gq,qg<rm,7r<s
0= (+[pr(a(s ))H[pv’(U(sq))]

—[pr(s(qu))] + p(rlqus)))) (g3 (rs) 169 | 19 | 150
(pr)((sq)u) = ...p<gq,qg<r
0= (=[pr((sq)w)] + [pr(q(su))] + p(u[rsq])

—u[(pg)rs] + u(plars])) g 167 | 17 | 150
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Degree 5 Minimal General Polynomials I11

n = d = 5 multiliear polynomial

’ Reductions \ t \ i \ e ‘

( r)((gs)u) = ...p<g<r<s<u

= (“lpr(s(qw)] + [pr((gs)w)] + plulrsq)) — ulpr(gs)]) gy | 166 | 16 | 150
((JT)((pS)U) (q7)(u(ps)), (gr)(s(up)), based on 6 longer
(gr)(s(pu)), (gs)(u(pr)), (qu)(r(sp)) identities 160 | 10 | 150
p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(gs))), p(u(q(sr)))
p(u(r(sq))), p(s(ulqr))), a(r(p(su))), q(r(s(pu))), a(r(u(ps)))
0 = (q(r(u(ps))) + r(u(g(sp))) + w(g(P(57)))ug)(grs) 150 | 0 | 150
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Degree 5 Minimal General Polynomials I11

n = d = 5 multiliear polynomial

’ Reductions \ t \ i \ e ‘

( r)((gs)u) = ...p<g<r<s<u

= (“lpr(s(qw)] + [pr((gs)w)] + plulrsq)) — ulpr(gs)]) gy | 166 | 16 | 150
((JT)((pS)U) (q7)(u(ps)), (gr)(s(up)), based on 6 longer
(gr)(s(pu)), (gs)(u(pr)), (qu)(r(sp)) identities 160 | 10 | 150
p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(gs))), p(u(q(sr)))
p(u(r(sq))), p(s(ulqr))), a(r(p(su))), q(r(s(pu))), a(r(u(ps)))
0 = (q(r(u(ps))) + r(u(g(sp))) + w(g(P(57)))ug)(grs) 150 | 0 | 150

@ Last reduction uses 10 identities each with 36 terms *(x(x(xx))):
0= (q(r(u(ps))) + r(u(a(sp) + u(@@(s7)))) 11 grs)
0= (q(r(u(ps))) +r(u(s(ap)) + u(@@(s1)))) . 1gre)
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Degree 5 Minimal General Polynomials I11

n = d = 5 multiliear polynomial

’ Reductions \ t \ i \ e ‘

( r)((gs)u) = ...p<g<r<s<u

= (“lpr(s(qw)] + [pr((gs)w)] + plulrsq)) — ulpr(gs)]) gy | 166 | 16 | 150
((JT)((pS)U) (q7)(u(ps)), (gr)(s(up)), based on 6 longer
(gr)(s(pu)), (gs)(u(pr)), (qu)(r(sp)) identities 160 | 10 | 150
p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(gs))), p(u(q(sr)))
p(u(r(sq))), p(s(ulqr))), a(r(p(su))), q(r(s(pu))), a(r(u(ps)))
0 = (q(r(u(ps))) + r(u(g(sp))) + w(g(P(57)))ug)(grs) 150 | 0 | 150

@ Last reduction uses 10 identities each with 36 terms x(*(*(xx))):
0= (q(r(u(ps))) +r(u(a(sp))) +u(@®P(s1)))) o1 gre)
0 = (a(r(u(ps))) + r(u(s(ap))) + ula(@(s7) sy

@ Only left multiplications, associativity does not matter,
valid for any non-associative algebra
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Degree 4 Central Multilinear Polynomials
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Degree 4 Central Multilinear Polynomials
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Degree 4 Central Multilinear Polynomials continued

Similarly to (p(q(rs))) pabfrs]{ar} (s)

also (P(Q(TS))) [p,ql,[rs],{p,r Ha,s}

is a different real degree 4 polynomial.
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Degree 4 Central Multilinear Polynomials continued

Similarly to (p(q(rs))) pabfrs]{ar} (s)

also (P(Q(TS))) [p,ql,[rs],{p,r Ha,s}

is a different real degree 4 polynomial.

Commutators of the 3 real polynomials with any octonion result in a
total of 25 identities of degree 5 (table above).
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Degree 4 Central Multilinear Polynomials continued

Similarly to (p(q(rs))) .l irs] s}

also (P(Q(TS))) [p,ql,[rs],{p,r Ha,s}

is a different real degree 4 polynomial.

Commutators of the 3 real polynomials with any octonion result in a
total of 25 identities of degree 5 (table above).

Changing p(q(rs)) to ((pg)r)s, (pa)(rs), (p(qr))s, p((gr)s)
does not give new real polynomials.
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General

o CA systems know non-commutativity but not non-associativity.
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General

o CA systems know non-commutativity but not non-associativity.

e Why not using existing packages, like 'Differential Geometry’ in
MAPLE?

e Total ordering of octonion products needed to define leading terms
of IDs to reduce P.
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General

CA systems know non-commutativity but not non-associativity.

Why not using existing packages, like 'DifferentialGeometry’ in
MAPLE?

Total ordering of octonion products needed to define leading terms
of IDs to reduce P.

How to avoid the extremely time-costly splitting of polynomials
with, e.g. 250 million terms?
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General

o CA systems know non-commutativity but not non-associativity.

e Why not using existing packages, like 'Differential Geometry’ in
MAPLE?

e Total ordering of octonion products needed to define leading terms
of IDs to reduce P.

e How to avoid the extremely time-costly splitting of polynomials
with, e.g. 250 million terms?

e How to lower cubic cost of solving lin. alg. system with 10°
equations?
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Algorithmic Changes

e For each row in the tables do not do 1 run but a sequencee of
them. Start with smaller number of components than 8n and
increase it successively.
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e For each row in the tables do not do 1 run but a sequencee of
them. Start with smaller number of components than 8n and
increase it successively.

After each run update relations between coeffs in P.
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Algorithmic Changes

e For each row in the tables do not do 1 run but a sequencee of
them. Start with smaller number of components than 8n and
increase it successively.

After each run update relations between coeffs in P.

e For multilinear P, when adding more new components to an
octonian variable for the next run, set the other components of the
variable temporarily to zero.
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Algorithmic Changes

e For each row in the tables do not do 1 run but a sequencee of
them. Start with smaller number of components than 8n and
increase it successively.

After each run update relations between coeffs in P.

e For multilinear P, when adding more new components to an
octonian variable for the next run, set the other components of the
variable temporarily to zero.

o Fine tune the number of new components per run.
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Outline

© Results
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Result for KAV-Weights

o w(0) =3, woy) =1, wu) =2, w(L) =2

e Two solutions have the same evolution equation
Wy = Uggy + Uity + Ugll = Uggy + (u?)g
e Two slightly different Lax pairs
LG = Gy + 3uG, MG = 4Gy + 2uG, + u,G

LG =Gy + %Gu, MG = 4G pr + 2Gu + Guy
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Result for mKdV-Weights 1

e Weights: w(0;) = 3,w(0;) = 1,w(u) =1 (< 2) first try: w(L) =1,
e More unknowns: f; (i=1,...,7),1; (i=1,2,3), m; (i=1,...,21)
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Result for mKdV-Weights 1

e Weights: w(9;) = 3,w(0z) = 1,w(u) =1 (< 2) first try: w(L) =
e More unknowns: f; (i=1,...,7),1; (1=1,2,3), m; (i=1,...

@ Six solutions with 5 free parameters each,

| SO P55 s TS T W s Teto T AN /cY S SN 23 WoYel ' MBBEY A hout Integrable Evolution Equations July 1-5, 2024

L,

,21)

42 /53



Result for mKdV-Weights 1

Weights: w(0;) = 3, w(0;) = 1,w(u) =1 (< 2) first try: w(L) =1,
More unknowns: f; (i=1,...,7),1; (i=1,2,3),m; (i=1,...,21)

Six solutions with 5 free parameters each,

e Removing non-relevant gauge terms in MG,

Scaling u and L,

Rewrite solution by using product commutators [A, B] = AB — BA
and associators [A, B,C| = (AB)C — A(BC)
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Result for mKdV-Weights 1

Weights: w(0;) = 3, w(0;) = 1,w(u) =1 (< 2) first try: w(L) =1,
e More unknowns: f; (i=1,...,7),1; (i=1,2,3), m; (i=1,...,21)
@ Six solutions with 5 free parameters each,

e Removing non-relevant gauge terms in MG,

@ Scaling u and L,

e Rewrite solution by using product commutators [A, B] = AB — BA
and associators [A, B,C| = (AB)C — A(BC)

o Result: 2 evolution equations each with 3 Lax pairs
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Result for mKdV-Weights II

Up = Ugge + (U2 Uy + vtz + ugu?) + [u, [ug, ul]
LG =G, — [G,u] +2Gu
MG =[G, ugy] — 2Gugy + 2[G, ug, u] — [G, [u, uz] + a(|G, u3] — 2Gu3)

LG =Gy +uG
MG = —peG + 2[ug, u, G] + [u, ug]G — auG

and a similar Lax pair with G on the left in all products.
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Result for mKdV-Weights 111

Ut = Uggy+ (U, u| + a(uQu;c + uugu + uxu2) + 2[u, [ug, u]]

LG =G, — [G,u] 26T
MG =[G, ugz] + 6[G, ugz, u] + 2[G, [ug, u]] + ]G, u3]

LG = G,—2uG—-Gu
MG = _[urza G] + U G + 6[ux,u, G] — 2[[“%“], G]
—a(fu’,G] - 3u°G)

and a similar Lax pair with G on the left in all products.
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Result for mKdV-Weights IV

New try with next higher w(L) =2 (> 1)
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Result for mKdV-Weights IV

New try with next higher w(L) =2 (> 1)
Results:

@ The same evelutionary equations with higher degree Lax pairs
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Result for mKdV-Weights IV

New try with next higher w(L) =2 (> 1)
Results:

@ The same evelutionary equations with higher degree Lax pairs

@ 2 additional evolution equations each with 2 Lax pairs:

Ut = Ugge — (g + upu®) (mKdV equation)
LG = Gy + (uy — u?)G,
MG = 4G 130 + 6(uy — uz)Gx + 3(ugy — (u2)x)G

and a similar Lax pair with G on the left in all products.
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Result for mKdV-Weights IV

New try with next higher w(L) =2 (> 1)
Results:

@ The same evelutionary equations with higher degree Lax pairs

@ 2 additional evolution equations each with 2 Lax pairs:

Ut = Ugge — (g + upu®) (mKdV equation)
LG = Gy + (uy — u?)G,
MG = 4G 130 + 6(uy — uz)Gx + 3(ugy — (u2)x)G

and a similar Lax pair with G on the left in all products.

Up = Upge + 3u§ (Potential KdV equation)

LG = Gpp +u,G, MG = 4G pp + 6u; Gy + 3ug, G

and a similar Lax pair with G on the left in all products.
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Conclusion |

We obtained

e minimal general octonion polynomials multilinear and with
repeating factors, both cases for degree 3, 4, 5
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Conclusion |
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e new compact multilinear vanishing identities and central
polynomials of degree 4, 5,

e term dropping rules applicable also to higher degree polynomials
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repeating factors, both cases for degree 3, 4, 5

e new compact multilinear vanishing identities and central
polynomials of degree 4, 5,

e term dropping rules applicable also to higher degree polynomials

o efficient algorithms for computations with octonions
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Conclusion |

We obtained

e minimal general octonion polynomials multilinear and with
repeating factors, both cases for degree 3, 4, 5

e new compact multilinear vanishing identities and central
polynomials of degree 4, 5,

e term dropping rules applicable also to higher degree polynomials
o efficient algorithms for computations with octonions

e insight into using reverse multiplication to formulate new types of
symmetries (multifactor and non-associative generalizations of the
commutator and the Jordan product)
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Conclusion II

e We found the octonion KdV, mKdV and potential KdV equation
that possess Lax pairs.
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Conclusion II

e We found the octonion KdV, mKdV and potential KdV equation
that possess Lax pairs.
e The method is (mostly) algorithmic.

o Inputs are w(d;), w(0z), w(u),w(L).

e The scaling homogeneous ansatz polynomials for F, LG, MG are
generated by a separate program, which automatically uses octonion
identities up to degree 4 to eliminate redundant terms of degree > 4.

o Currently Maple formulates the overdetermined systems.

e Solution is done by Maple (simple cases) or ’Crack’ (larger cases).

o Start at the lowest possible w(L) and later increase the weight to
search for additional variants of evolution equation finally limited
by complexity.
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Conclusion 111

e Different Lax pairs may be useful for different purposes.

o Inverse scattering transformation (IST)
e Darboux transformation
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Conclusion 111

e Different Lax pairs may be useful for different purposes.
o Inverse scattering transformation (IST)
e Darboux transformation
o Future work:
e Find and use higher degree identities of octonions to produce
general polynomial ansatz for F, LG, MG with minimal number of
terms.
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Conclusion 111

e Different Lax pairs may be useful for different purposes.

o Inverse scattering transformation (IST)

e Darboux transformation

o Future work:

e Find and use higher degree identities of octonions to produce
general polynomial ansatz for F, LG, MG with minimal number of
terms.

e Rewrite in REDUCE what is currently in MAPLE
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e Different Lax pairs may be useful for different purposes.

o Inverse scattering transformation (IST)
e Darboux transformation

e Future work:

e Find and use higher degree identities of octonions to produce
general polynomial ansatz for F, LG, MG with minimal number of
terms.

e Rewrite in REDUCE what is currently in MAPLE

e Run 5th order evolution equations
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Conclusion 111

e Different Lax pairs may be useful for different purposes.

o Inverse scattering transformation (IST)
e Darboux transformation

e Future work:

e Find and use higher degree identities of octonions to produce
general polynomial ansatz for F, LG, MG with minimal number of
terms.

e Rewrite in REDUCE what is currently in MAPLE

e Run 5th order evolution equations

o Run other scaling weights: w(u) =  (e.g. Ibragimov-Shabat
equation)
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Conclusion 111

e Different Lax pairs may be useful for different purposes.

o Inverse scattering transformation (IST)
e Darboux transformation

e Future work:

e Find and use higher degree identities of octonions to produce
general polynomial ansatz for F, LG, MG with minimal number of
terms.

e Rewrite in REDUCE what is currently in MAPLE

e Run 5th order evolution equations

o Run other scaling weights: w(u) =  (e.g. Ibragimov-Shabat
equation)

o Add complex conjugation u, % (e.g. NLS equation)
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The End

Thank youl
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