About Integrable Evolution Equations with Lax Pairs over the Octonions

ISQS28 - PRAGUE

P. Lam, S. Anco, T. Wolf

Brock University, St Catharines, Canada

July 1-5, 2024

P. Lam, S. Anco, T. Wolf Brock Un⁴About Integrable Evolution Equation: July 1-5, 2024 1/53

Outline



D References

About Lax Pairs

• An evolution equation $u_t = F(u, u_x, u_{xx}, ...)$ is said to be integrable if it has a **Lax Pair** L and M that are linear differential operators in terms of ∂_x with coefficients in $u, u_x, u_{xx}, ...$ satisfying

$$L_t = [M, L]$$

identically in all u, u_x, u_{xx}, \dots iff $u_t = F$.

About Lax Pairs

• An evolution equation $u_t = F(u, u_x, u_{xx}, ...)$ is said to be integrable if it has a **Lax Pair** L and M that are linear differential operators in terms of ∂_x with coefficients in $u, u_x, u_{xx}, ...$ satisfying

$$L_t = [M, L]$$

identically in all u, u_x, u_{xx}, \dots iff $u_t = F$.

• Lax pair is used in the inverse scattering transform to generate multi-soliton solutions which have many physical applications.

About Lax Pairs

• An evolution equation $u_t = F(u, u_x, u_{xx}, ...)$ is said to be integrable if it has a **Lax Pair** L and M that are linear differential operators in terms of ∂_x with coefficients in $u, u_x, u_{xx}, ...$ satisfying

$$L_t = [M, L]$$

identically in all u, u_x, u_{xx}, \dots iff $u_t = F$.

- Lax pair is used in the inverse scattering transform to generate multi-soliton solutions which have many physical applications.
 Two well known examples:
 - $u_t = uu_x + u_{xxx}$ Korteweg-De Vries (KdV) equation $L = \partial_x^2 + \frac{1}{6}u, \qquad M = 4\partial_x^3 + u\partial_x + \frac{1}{2}u_x \qquad (w(L) = 2)$

$$\begin{split} u_t &= u^2 u_x + u_{xxx} \mod \text{fied Korteweg-De Vries (mKdV) equation} \\ L &= \partial_x + u, \qquad M = -u_{xx} - \frac{1}{3}u^3 \qquad (w(L) = 1) \\ L &= \partial_x^2 + 2u\partial_x + u^2 + u_x, \qquad M = -u_{xx} - \frac{1}{3}u^3 \qquad (w(L) = 2) \end{split}$$

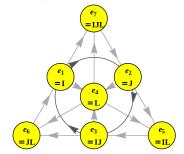
• Cayley-Dickson construction: real, complex, quaternions, octonions, sedenions,... by introducing 1 new imaginary number each time

- Cayley-Dickson construction: real, complex, quaternions, octonions, sedenions,... by introducing 1 new imaginary number each time
- 8-dimensional algebra formed by 1 real and 7 imaginary basis elements

- Cayley-Dickson construction: real, complex, quaternions, octonions, sedenions,... by introducing 1 new imaginary number each time
- 8-dimensional algebra formed by 1 real and 7 imaginary basis elements
- normed division algebra over the real numbers

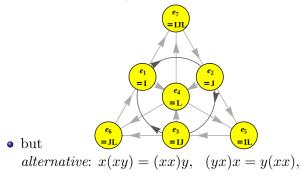
About Octonions II

• noncommutative, nonassociative



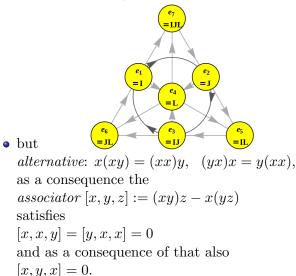
About Octonions II

• noncommutative, nonassociative



About Octonions II

• noncommutative, nonassociative



July 1-5, 2024

• appear in attempts to understand and extend the Standard Model of elementary particle physics and string theory C. Furey, Phys. Rev. D 86, 025024 (2012); T.P.Singh, Z.Naturforsch. A 75, 1051 (2020)

- appear in attempts to understand and extend the Standard Model of elementary particle physics and string theory C. Furey, Phys. Rev. D 86, 025024 (2012); T.P.Singh, Z.Naturforsch. A 75, 1051 (2020)
- other applications in quantum logic, special relativity and supersymmetry

- appear in attempts to understand and extend the Standard Model of elementary particle physics and string theory C. Furey, Phys. Rev. D 86, 025024 (2012); T.P.Singh, Z.Naturforsch. A 75, 1051 (2020)
- other applications in quantum logic, special relativity and supersymmetry John C. Baez https://arxiv.org/abs/math/0105155 (2002)
- little literature exists on specific integrable evolution equations over octonions A. Restuccia, A. Sotomayor, J.P. Veiro, arXiv:1609.05410v1 [math-ph] (2016)

• Integrable scalar evolution equations have been extended to multi-component (coupled) evolution equations (e.g. over vectors, matrices, Lie algebras, graded algebras).

- Integrable scalar evolution equations have been extended to multi-component (coupled) evolution equations (e.g. over vectors, matrices, Lie algebras, graded algebras).
- This project: Integrable evolution equations over the octonions

- Integrable scalar evolution equations have been extended to multi-component (coupled) evolution equations (e.g. over vectors, matrices, Lie algebras, graded algebras).
- This project: Integrable evolution equations over the octonions
- Start with KdV and mKdV type that have a Lax pair

- Integrable scalar evolution equations have been extended to multi-component (coupled) evolution equations (e.g. over vectors, matrices, Lie algebras, graded algebras).
- This project: Integrable evolution equations over the octonions
- Start with KdV and mKdV type that have a Lax pair
- Later goal: Classification

Outline

Introduction

- 2 Outline of Method
 - **3** Octonion Identities
 - 4 Motivation
- 5 Computing Idendities
- 5 Known Polynomials
- 7 All Polynomials
- Implementation
- 9 Results
- **10** Conclusions
- **D** References

• Select weights for $\partial_t, \partial_x, u, L$, e.g. KdV-scaling: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 2$, and start with w(L) = 2 $\rightarrow w(M) = w(L_t) - w(L) = w(\partial_t) = 3$ $\rightarrow w(F) = w(u) + w(\partial_t) = 5$

- Select weights for $\partial_t, \partial_x, u, L$, e.g. KdV-scaling: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 2$, and start with w(L) = 2 $\rightarrow w(M) = w(L_t) - w(L) = w(\partial_t) = 3$ $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
- Make general homogenous polynomial ansatz for $F(=u_t), L, M$ with undetermined constant coefficients f_j, l_j, m_j and octonion variables u, u_x, u_{xx}, \dots

- Select weights for $\partial_t, \partial_x, u, L$, e.g. KdV-scaling: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 2$, and start with w(L) = 2 $\rightarrow w(M) = w(L_t) - w(L) = w(\partial_t) = 3$ $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
- Make general homogenous polynomial ansatz for $F(=u_t), L, M$ with undetermined constant coefficients f_j, l_j, m_j and octonion variables u, u_x, u_{xx}, \dots
- Formulate $L_t = [M, L]$

- Select weights for $\partial_t, \partial_x, u, L$, e.g. KdV-scaling: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 2$, and start with w(L) = 2 $\rightarrow w(M) = w(L_t) - w(L) = w(\partial_t) = 3$ $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
- Make general homogenous polynomial ansatz for $F(=u_t), L, M$ with undetermined constant coefficients f_j, l_j, m_j and octonion variables u, u_x, u_{xx}, \dots
- Formulate $L_t = [M, L]$
- Split wrt. u, u_x, u_{xx}, \dots

- Select weights for $\partial_t, \partial_x, u, L$, e.g. KdV-scaling: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 2$, and start with w(L) = 2 $\rightarrow w(M) = w(L_t) - w(L) = w(\partial_t) = 3$ $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
- Make general homogenous polynomial ansatz for $F(=u_t), L, M$ with undetermined constant coefficients f_j, l_j, m_j and octonion variables u, u_x, u_{xx}, \dots
- Formulate $L_t = [M, L]$
- Split wrt. u, u_x, u_{xx}, \dots
- Solve the overdetermined non-linear polynomial system for unknown coefficients f_j, l_j, m_j to obtain the integrable equation $u_t = F$ and Lax pair L, M.

Instead of linear differential operators L, M

• Introduce zero weight G(x)

- Introduce zero weight G(x)
- Make polynomial ansatz for LG, MG, linear homogeneous in G, G_x, \dots

- Introduce zero weight G(x)
- Make polynomial ansatz for LG, MG, linear homogeneous in G, G_x, \dots
- Instead of $L_tG = [M, L]G$ formulate $(LG)_t = M(LG) L(MG)$.

- Introduce zero weight G(x)
- Make polynomial ansatz for LG, MG, linear homogeneous in G, G_x, \dots
- Instead of $L_tG = [M, L]G$ formulate $(LG)_t = M(LG) L(MG)$.
- To compute $(LG)_t$ replace $u_t = F$, $u_{tx} = dF/dx$,....

- Introduce zero weight G(x)
- Make polynomial ansatz for LG, MG, linear homogeneous in G, G_x, \dots
- Instead of $L_tG = [M, L]G$ formulate $(LG)_t = M(LG) L(MG)$.
- To compute $(LG)_t$ replace $u_t = F$, $u_{tx} = dF/dx$,....
- To compute M(LG) replace in MG each $G, G_x, ...$ 'in place' by $LG, (LG)_x, ...$
- To compute L(MG) replace in LG each $G, G_x, ...$ 'in place' by $MG, (MG)_x, ...$

KdV-scaling:
$$w(\partial_t) = 3$$
, $w(\partial_x) = 1$, $w(u) = 2$, try $w(LG) = w(L) = 2$
 $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
 $\rightarrow w(MG) = w(M) = w(\partial_t) = 3$

$$F = f_1 u_{xxx} + f_2 u u_x + f_3 u_x u$$

$$LG = l_1 G_{xx} + l_2 G u + l_3 u G$$

$$MG = m_1 G_{xxx} + m_2 G_x u + m_3 u G_x + m_4 G u_x + m_5 u_x G$$

KdV-scaling:
$$w(\partial_t) = 3$$
, $w(\partial_x) = 1$, $w(u) = 2$, try $w(LG) = w(L) = 2$
 $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
 $\rightarrow w(MG) = w(M) = w(\partial_t) = 3$

KdV-scaling:
$$w(\partial_t) = 3$$
, $w(\partial_x) = 1$, $w(u) = 2$, try $w(LG) = w(L) = 2$
 $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
 $\rightarrow w(MG) = w(M) = w(\partial_t) = 3$

$$F = f_1 u_{xxx} + f_2 u u_x + f_3 u_x u$$

$$LG = l_1 G_{xx} + l_2 G u + l_3 u G$$

$$MG = m_1 G_{xxx} + m_2 G_x u + m_3 u G_x + m_4 G u_x + m_5 u_x G$$

$$(LG)_t = l_2 G F + l_3 F G$$

$$L(MG) = l_1 (MG)_{xx} + l_2 (MG) u + l_3 u (MG)$$

KdV-scaling:
$$w(\partial_t) = 3$$
, $w(\partial_x) = 1$, $w(u) = 2$, try $w(LG) = w(L) = 2$
 $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
 $\rightarrow w(MG) = w(M) = w(\partial_t) = 3$

$$\begin{aligned} & \text{KdV-scaling: } w(\partial_t) = 3, \, w(\partial_x) = 1, \, w(u) = 2, \, \text{try } w(LG) = w(L) = 2 \\ & \rightarrow w(F) = w(u) + w(\partial_t) = 5 \\ & \rightarrow w(MG) = w(M) = w(\partial_t) = 3 \end{aligned}$$

$$\begin{aligned} & F &= f_1 u_{xxx} + f_2 u u_x + f_3 u_x u \\ & LG &= l_1 G_{xx} + l_2 G u + l_3 u G \\ & MG &= m_1 G_{xxx} + m_2 G_x u + m_3 u G_x + m_4 G u_x + m_5 u_x G \\ & (LG)_t &= l_2 G F + l_3 F G \\ & L(MG) &= l_1 (MG)_{xx} + l_2 (MG) u + l_3 u (MG) \\ & M(LG) &= m_1 (LG)_{xxx} + m_2 (LG)_x u + m_3 u (LG)_x + \\ & m_4 (LG) u_x + m_5 u_x (LG) \end{aligned}$$

Problem: For high $w(\partial_t), w(L)$ and low $w(\partial_x), w(u)$ the number of terms goes into the (10s of) 1000s

Adapting to Identities for Octonions

Spliting wrt. $u, u_x, u_{xx}, ...$ is too restrictive because of **polynomial identities** of octonions, like 0 = (wu)v - w(uv) + (vu)w - v(uw)

Adapting to Identities for Octonions

Spliting wrt. $u, u_x, u_{xx}, ...$ is too restrictive because of **polynomial identities** of octonions, like 0 = (wu)v - w(uv) + (vu)w - v(uw)

Instead

• Replace $u, u_x, ...$ by their component form $u = \sum_{i=0}^{7} u_i(x, t)e_i, ...$

Adapting to Identities for Octonions

Spliting wrt. $u, u_x, u_{xx}, ...$ is too restrictive because of **polynomial identities** of octonions, like 0 = (wu)v - w(uv) + (vu)w - v(uw)

Instead

- Replace $u, u_x, ...$ by their component form $u = \sum_{i=0}^{7} u_i(x, t) e_i, ...$
- Split wrt. e_i, u_i, u_{xi}, \dots

Adapting to Identities for Octonions

Spliting wrt. $u, u_x, u_{xx}, ...$ is too restrictive because of **polynomial identities** of octonions, like 0 = (wu)v - w(uv) + (vu)w - v(uw)

Instead

- Replace $u, u_x, ...$ by their component form $u = \sum_{i=0}^{7} u_i(x, t) e_i, ...$
- Split wrt. e_i, u_i, u_{xi}, \dots

Consequences:

- Huge computational cost,
- A new necessary research project: Find and use all octonion identities

Adapting to Identities for Octonions

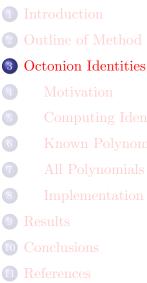
Spliting wrt. $u, u_x, u_{xx}, ...$ is too restrictive because of **polynomial identities** of octonions, like 0 = (wu)v - w(uv) + (vu)w - v(uw)

Instead

- Replace $u, u_x, ...$ by their component form $u = \sum_{i=0}^{7} u_i(x, t) e_i, ...$
- Split wrt. e_i, u_i, u_{xi}, \dots

Consequences:

- Huge computational cost,
- A new necessary research project: Find and use all octonion identities



4

1 Introduction

- 2 Outline of Method
- **3** Octonion Identities

Motivation

- 5 Computing Idendities
- Known Polynomials
- 7 All Polynomials
- Implementation
- 9 Results

10 Conclusions

D References

• Is a given octonion polynomial identically zero?

- Is a given octonion polynomial identically zero?
- How to simplify an octonion polynomial?

- Is a given octonion polynomial identically zero?
- How to simplify an octonion polynomial?
- How to decide ideal membership?

- Is a given octonion polynomial identically zero?
- How to simplify an octonion polynomial?
- How to decide ideal membership?
- Find all identically vanishing polynomials up to some degree.

- Is a given octonion polynomial identically zero?
- How to simplify an octonion polynomial?
- How to decide ideal membership?
- Find all identically vanishing polynomials up to some degree.
- Find all central (real) polynomials up to some degree.

1 Introduction

- 2 Outline of Method
- **3** Octonion Identities
 - Motivation
- 5 Computing Idendities
 - Known Polynomials
 - 7 All Polynomials
 - Implementation
- 9 Results
- **10** Conclusions
- References

• Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$
- Split P = 0 w.r.t. e_i, u_i, \dots

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$
- Split P = 0 w.r.t. e_i, u_i, \dots
- Solve the linear system for the undetermined coefficients c_k

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$
- Split P = 0 w.r.t. e_i, u_i, \dots
- Solve the linear system for the undetermined coefficients c_k
- Substitute general solution into P

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$
- Split P = 0 w.r.t. e_i, u_i, \dots
- Solve the linear system for the undetermined coefficients c_k
- Substitute general solution into P
- $\bullet\,$ Get all IDs (identities) as coefficients of free parameters in P

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$
- Split P = 0 w.r.t. e_i, u_i, \dots
- Solve the linear system for the undetermined coefficients c_k
- Substitute general solution into P
- $\bullet\,$ Get all IDs (identities) as coefficients of free parameters in P
- Find linear combinations of identities and permutations of them that are short, highly symmetric to allow a compact formulation.

n = number of octonion variables u, v, w.. (in application $u, u_x, u_{2x}, ...$) d = degree of polynomial P(u, v, ...) (in the application P = L, M)

 $\begin{array}{l} n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d = \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m = \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \end{array}$

- $\begin{array}{l} n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d = \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m = \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \end{array}$
- t = # of terms of $P : d! \times m(d)$ (multilinearity)

- $\begin{array}{l} n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d = \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m = \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \end{array}$
- t = # of terms of $P : d! \times m(d)$ (multilinearity)
- $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $\begin{array}{l} n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d = \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m = \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \end{array}$

- t = # of terms of $P: d! \times m(d)$ (multilinearity)
- $\tau = \#$ of terms of P in expanded form $= t \times 8^d$
- c = # of real/imag. components of all octonion variables = 8n

 $n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..)$ d = degree of polynomial P(u, v, ..) (in the application P = L, M) m = # of different ways to non-associative multiply the d factors of 1 term, $m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad \text{(recursive formula summing over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications})$ $t = \# \text{ of terms of } P: d! \times m(d) \text{ (multilinearity)}$

- $\tau = \#$ of terms of P in expanded form $= t \times 8^{d}$
- c = # of real/imag. components of all octonion variables = 8n
- i = # of identities = # of free coeff. in general solution of P = 0

 $\begin{array}{l} n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d = \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m = \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d - 1 \text{ options for the last of the } d - 1 \text{ multiplications}) \\ t = \# \text{ of terms of } P : d! \times m(d) \text{ (multilinearity)} \\ \tau = \# \text{ of terms of } P \text{ in expanded form } = t \times 8^d \\ c = \# \text{ of real/imag. components of all octonion variables } = 8n \\ i = \# \text{ of identities } = \# \text{ of free coeff. in general solution of } P = 0 \end{array}$

e = # of essential terms in P which is t - z

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429

$$\begin{split} n &= \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d &= \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m &= \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) &= 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \\ t &= \# \text{ of terms of } P: d! \times m(d) \text{ (multilinearity)} \\ \tau &= \# \text{ of terms of } P \text{ in expanded form } = t \times 8^d \\ c &= \# \text{ of real/imag. components of all octonion variables} = 8n \end{split}$$

- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	d = n	1	2	3	4	5	6	7	8
t 1 2 12 120 1680 30240 6.65 × 10 ⁵ 1.69 × 10	m	1	1	2	1 5	14			429
	t	1	2			1680	30240		1.69×10^{7}

 $\begin{array}{l} n = \text{number of octonion variables } u, v, w.. \ (\text{in application } u, u_x, u_{2x}, ..) \\ d = \text{degree of polynomial } P(u, v, ..) \ (\text{in the application } P = L, M) \\ m = \# \ \text{of different ways to non-associative multiply the } d \ \text{factors of 1 term}, \\ m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \ \text{options for the last of the } d-1 \ \text{multiplications}) \\ t = \# \ \text{of terms of } P : d! \times m(d) \ (\text{multilinearity}) \\ \tau = \# \ \text{of terms of } P \ \text{in expanded form} = t \times 8^d \\ c = \# \ \text{of real/imag. components of all octonion variables} = 8n \end{array}$

- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	d = n	1	2	3	4	5	6	7	8
	m	1	1	2	5	14	42	132	429
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t	1	2	12	120	1680	30240		1.69×10^{7}
	au		128	6140	491520	55×10^6	7.9×10^9	1.39×10^{12}	2.84×10^{14}

$$\begin{split} n &= \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ...) \\ d &= \text{degree of polynomial } P(u, v, ...) \text{ (in the application } P = L, M) \\ m &= \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) &= 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \\ t &= \# \text{ of terms of } P : d! \times m(d) \text{ (multilinearity)} \\ \tau &= \# \text{ of terms of } P \text{ in expanded form } = t \times 8^d \end{split}$$

- c = # of real/imag. components of all octonion variables = 8n
- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429
t	1	2	12	120	1680	30240	6.65×10^5	1.69×10^7
au	8	128	6140	491520	55×10^6	7.9×10^9	$1.39 imes 10^{12}$	2.84×10^{14}
с	8	16	24	32	40	48	56	64

$$\begin{split} n &= \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ...) \\ d &= \text{degree of polynomial } P(u, v, ...) \text{ (in the application } P = L, M) \\ m &= \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) &= 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \\ t &= \# \text{ of terms of } P : d! \times m(d) \text{ (multilinearity)} \\ \tau &= \# \text{ of terms of } P \text{ in expanded form } = t \times 8^d \end{split}$$

- c = # of real/imag. components of all octonion variables = 8n
- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

	d = n	1	2	3	4	5	6	7	8
	m	1	1	2	5	14	42	132	429
	t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^7
	au	8	128	6140	491520	55×10^6	7.9×10^9	$1.39 imes 10^{12}$	2.84×10^{14}
	c	8	16	24	32	40	48	56	64
Γ	i	0	0						

$$\begin{split} n &= \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d &= \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m &= \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) &= 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \\ t &= \# \text{ of terms of } P: d! \times m(d) \text{ (multilinearity)} \\ \tau &= \# \text{ of terms of } P \text{ in expanded form } = t \times 8^d \end{split}$$

- c~=# of real/imag. components of all octonion variables = 8n
- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

	d = n	1	2	3	4	5	6	7	8
ſ	m	1	1	2	5	14	42	132	429
	t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^{7}
	τ	8	128	6140	491520	55×10^6	7.9×10^9	$1.39 imes 10^{12}$	2.84×10^{14}
	c	8	16	24	32	40	48	56	64
Ī	i	0	0	5					

$$\begin{split} n &= \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d &= \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m &= \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) &= 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \\ t &= \# \text{ of terms of } P: d! \times m(d) \text{ (multilinearity)} \\ \tau &= \# \text{ of terms of } P \text{ in expanded form} = t \times 8^d \end{split}$$

- c = # of real/imag. components of all octonion variables = 8n
- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

[d = n	1	2	3	4	5	6	7	8
	m	1	1	2	5	14	42	132	429
	t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^{7}
	au	8	128	6140	491520	55×10^6	7.9×10^9	$1.39 imes 10^{12}$	2.84×10^{14}
ſ	c	8	16	24	32	40	48	56	64
	i	0	0	5	88				

$$\begin{split} n &= \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d &= \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m &= \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) &= 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \\ t &= \# \text{ of terms of } P: d! \times m(d) \text{ (multilinearity)} \\ \tau &= \# \text{ of terms of } P \text{ in expanded form} = t \times 8^d \end{split}$$

- c~=# of real/imag. components of all octonion variables = 8n
- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

[d = n	1	2	3	4	5	6	7	8
	m	1	1	2	5	14	42	132	429
	t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^7
	τ	8	128	6140	491520	55×10^6	7.9×10^9	$1.39 imes 10^{12}$	$2.84 imes 10^{14}$
ſ	c	8	16	24	32	40	48	56	64
Ī	i	0	0	5	88	1530			

$$\begin{split} n &= \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d &= \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m &= \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) &= 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \\ t &= \# \text{ of terms of } P : d! \times m(d) \text{ (multilinearity)} \\ \tau &= \# \text{ of terms of } P \text{ in expanded form } = t \times 8^d \end{split}$$

- c~=# of real/imag. components of all octonion variables = 8n
- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429
t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^7
au	8	128	6140	491520	55×10^6	7.9×10^{9}	1.39×10^{12}	2.84×10^{14}
c	8	16	24	32	40	48	56	64
i	0	0	5	88	1530	?	?	?
e	1	2	7	32	150	?	?	?

The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application $u, u_x, u_{2x}, ...$) d = degree of polynomial P(u, v, ...) (in the application P = L, M)

The Computational Complexity of Repeating Factors

 $\begin{array}{l} n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d = \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m = \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \end{array}$

The Computational Complexity of Repeating Factors

- $\begin{array}{l} n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d = \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m = \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \end{array}$
- t = # of terms of $P : n^d \times m(d)$ (factors may repeat)

- $\begin{array}{l} n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d = \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m = \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \end{array}$
- t = # of terms of $P : n^d \times m(d)$ (factors may repeat)
- $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..)$ d = degree of polynomial P(u, v, ..) (in the application P = L, M) m = # of different ways to non-associative multiply the d factors of 1 term, $m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad \text{(recursive formula summing} \text{ over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications})$ $t = \# \text{ of terms of } P: n^d \times m(d) \text{ (factors may repeat)}$

- $\tau = \#$ of terms of P in expanded form $= t \times 8^d$
- c = # of real/imag. components of all octonion variables = 8n

$$\begin{split} n &= \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d &= \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m &= \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term,} \\ m(1) &= 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \\ t &= \# \text{ of terms of } P: n^d \times m(d) \text{ (factors may repeat)} \\ \tau &= \# \text{ of terms of } P \text{ in expanded form } = t \times 8^d \end{split}$$

- c~= # of real/imag. components of all octonion variables = 8n
- i = # of identities = # of free coeff. in general solution of P = 0

 $\begin{array}{l} n = \text{number of octonion variables } u, v, w.. \ (\text{in application } u, u_x, u_{2x}, ..) \\ d = \text{degree of polynomial } P(u, v, ..) \ (\text{in the application } P = L, M) \\ m = \# \ \text{of different ways to non-associative multiply the } d \ \text{factors of 1 term}, \\ m(1) = 1, \ m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing} \\ \text{over all } d-1 \ \text{options for the last of the } d-1 \ \text{multiplications}) \\ t = \# \ \text{of terms of } P : n^d \times m(d) \ (\text{factors may repeat}) \\ \tau = \# \ \text{of terms of } P \ \text{in expanded form} = t \times 8^d \\ c = \# \ \text{of real/imag. components of all octonion variables} = 8n \\ i = \# \ \text{of identities} = \# \ \text{of free coeff. in general solution of } P = 0 \end{array}$

e = # of essential terms in P which is t - z

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42

$$\begin{split} n &= \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ..) \\ d &= \text{degree of polynomial } P(u, v, ..) \text{ (in the application } P = L, M) \\ m &= \# \text{ of different ways to non-associative multiply the } d \text{ factors of 1 term}, \\ m(1) &= 1, m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) \quad (\text{recursive formula summing over all } d-1 \text{ options for the last of the } d-1 \text{ multiplications}) \\ t &= \# \text{ of terms of } P : n^d \times m(d) \text{ (factors may repeat)} \\ \tau &= \# \text{ of terms of } P \text{ in expanded form } = t \times 8^d \\ c &= \# \text{ of real/imag. components of all octonion variables } = 8n \\ i &= \# \text{ of identities } = \# \text{ of free coeff. in general solution of } P = 0 \end{split}$$

- i = # of accential terms in R which is $t = \pi$
- e = # of essential terms in P which is t z

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^6

- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^6
au	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}

- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	$1.95 imes 10^6$
au	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
с	8	16	24	32	40	48

- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^6
τ	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
с	8	16	24	32	40	48
i	0	0				

- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^6
τ	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
c	8	16	24	32	40	48
i	0	0	26			-

- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^6
τ	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
c	8	16	24	32	40	48
i	0	0	26	992		

- i = # of identities = # of free coeff. in general solution of P = 0
- e = # of essential terms in P which is t z

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^6
τ	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
c	8	16	24	32	40	48
i	0	0	26	992	40375	

- i = # of identities = # of free coeff. in general solution of P = 0
- t = # of identities = # of free coeff. In general solution (
- e = # of essential terms in P which is t z

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^6
τ	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
<i>c</i>	8	16	24	32	40	48
i	0	0	26	992	40375	?
e	1	4	28	288	3375	?

Central Polynomials

A polynomial P = P(x, y, ...) is a *central* polynomial if P is real for any octonion variables x, y, ... and thus commutes with any other octonian variable u:

$$[P, u] = 0$$

and thus also satisfies the vanishing identity

$$[P, u, v] = (Pv)w - P(vw) = P(vw) - P(vw) = 0$$

for any octonions u, v.

Central Polynomials

A polynomial P = P(x, y, ...) is a *central* polynomial if P is real for any octonion variables x, y, ... and thus commutes with any other octonian variable u:

$$[P, u] = 0$$

and thus also satisfies the vanishing identity

$$[P, u, v] = (Pv)w - P(vw) = P(vw) - P(vw) = 0$$

for any octonions u, v.

Same procedure to compute them, only ignore coefficient of e_0 after splitting w.r.t. e_i .

Outline

1 Introduction

- 2 Outline of Method
- **3** Octonion Identities
- 4 Motivation
- 5 Computing Idendities
- 6 Known Polynomials
 - 7 All Polynomials
 - Implementation
- 9 Results

10 Conclusions

D References

Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4], Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4:
$$[a,b] \circ [c,d],$$
 (1)

where $x \circ y := xy + yx$,

Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4], Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4:
$$[a,b] \circ [c,d],$$
 (1)

where $x \circ y := xy + yx$, degree 5: $\sum_{alt} \{24a(b(c(de))) + 8a([b, c, d]e) - 11[a, b, [c, d, e]]\},$ (2)

where \sum is the alternating sum over the arguments.

Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4], Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4:
$$[a,b] \circ [c,d],$$
 (1)

where $x \circ y := xy + yx$, degree 5: $\sum_{alt} \{24a(b(c(de))) + 8a([b, c, d]e) - 11[a, b, [c, d, e]]\},$ (2)

where \sum is the alternating sum over the arguments. degree 6: No new ones.

Known Minimal Degree Identities

degree 1, 2: None degree 3: Just the alternative laws degree 4: No new ones degree 5: $[[a, b] \circ [c]]$

$$[[a,b] \circ [c,d], e] = 0, \tag{3}$$

Known Minimal Degree Identities

degree 1, 2: None degree 3: Just the alternative laws degree 4: No new ones degree 5: $[[a, b] \circ [c, d], e] =$

$$[[a,b] \circ [c,d], e] = 0, \tag{3}$$

$$\overline{P}_3(x^2) - \overline{P}_3(x) \circ x = 0, \tag{4}$$

where $V_x(y) := x \circ y$ and \overline{P}_3 is defined by

$$\overline{P}_3 = V_a V_b V_c + V_c V_a V_b + V_b V_c V_a - V_b V_a V_c - V_a V_c V_b - V_c V_b V_a$$

Known Minimal Degree Identities

degree 1, 2: None degree 3: Just the alternative laws degree 4: No new ones degree 5:

$$[[a,b] \circ [c,d], e] = 0, \tag{3}$$

$$\overline{P}_3(x^2) - \overline{P}_3(x) \circ x = 0, \tag{4}$$

where $V_x(y) := x \circ y$ and \overline{P}_3 is defined by

$$\overline{P}_3 = V_a V_b V_c + V_c V_a V_b + V_b V_c V_a - V_b V_a V_c - V_a V_c V_b - V_c V_b V_a$$

degree 6:

$$\left[\sum_{\text{alt}} \{24a(b(c(de))) + 8a([b,c,d]e) - 11[a,b,[c,d,e]]\}, f\right] = 0, \quad (5)$$

Outline

1 Introduction

- 2 Outline of Method
- **3** Octonion Identities
- Motivation
- 5 Computing Idendities
 - Known Polynomials
- **7** All Polynomials
 - Implementation
- 9 Results

10 Conclusions

D References

Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u, v] = 0, [v, u, u] = 0 give

$$[u,v,w]=[u,v,w]-[u+w,v,u+w]=\ldots=-[w,v,u]$$

and further total antisymmetry:

$$[u,v,w] = [v,w,u] = [w,u,v] = -[v,u,w] = -[u,w,v] = -[w,v,u]$$

Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u, v] = 0, [v, u, u] = 0 give

$$[u,v,w]=[u,v,w]-[u+w,v,u+w]=\ldots=-[w,v,u]$$

and further total antisymmetry:

$$[u,v,w] = [v,w,u] = [w,u,v] = -[v,u,w] = -[u,w,v] = -[w,v,u]$$

This is an example for equivalence of a (not fully skey symmetric 3-variable ID to a 2-variable IDs.

Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u, v] = 0, [v, u, u] = 0 give

$$[u,v,w]=[u,v,w]-[u+w,v,u+w]=\ldots=-[w,v,u]$$

and further total antisymmetry:

$$[u,v,w] = [v,w,u] = [w,u,v] = -[v,u,w] = -[u,w,v] = -[w,v,u]$$

This is an example for equivalence of a (not fully skey symmetric 3-variable ID to a 2-variable IDs.

Such IDs of degree > 3 are not systematically investigated sofar but needed for reducing polynomials.

Reductions require all identities, not only alternative laws. n=d=3 with $repeating \ factors$

Reductions	t	i	e
none	54	26	28
alternative laws	33	5	28
wu)v =, w > v, [w, u, v] = -[v, u, w]	30	2	28
$wu)v =, u \ge v, \ [w, u, v] = +[u, v, w]$	29	1	28
$\boxed{(wu)v=,w\geq u,[w,u,v]=+[v,w,u]}$	28	0	28

Reductions require all identities, not only alternative laws. n=d=3 with $repeating \ factors$

Reductions	t	i	e
none	54	26	28
alternative laws	33	5	28
wuv =, w > v, [w, u, v] = -[v, u, w]	30	2	28
$(wu)v =, u \ge v, \ [w, u, v] = +[u, v, w]$	29	1	28
$wu)v = \dots, w \ge u, [w, u, v] = +[v, w, u]$	28	0	28

The 26 identities included permutations of non-(skew)symmetric identities.

Reductions require all identities, not only alternative laws. n=d=3 with $repeating \ factors$

Reductions	t	i	e
none	54	26	28
alternative laws	33	5	28
wu)v =, w > v, [w, u, v] = -[v, u, w]	30	2	28
$(wu)v =, u \ge v, \ [w, u, v] = +[u, v, w]$	29	1	28
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	28	0	28

The 26 identities included permutations of non-(skew)symmetric identities.

e=28=const. \rightarrow All terms dropped from P were redundant.

Reductions require all identities, not only alternative laws. n=d=3 with $repeating \ factors$

Reductions	t	i	e
none	54	26	28
alternative laws	33	5	28
wuv =, w > v, [w, u, v] = -[v, u, w]	30	2	28
$(wu)v =, u \ge v, \ [w, u, v] = +[u, v, w]$	29	1	28
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	28	0	28

The 26 identities included permutations of non-(skew)symmetric identities.

e=28=const. \rightarrow All terms dropped from P were redundant.

Finally $i = 0 \rightarrow All$ redundant terms from P were dropped.

Reductions require all identities, not only alternative laws. n=d=3 with $repeating \ factors$

Reductions	t	i	e
none	54	26	28
alternative laws	33	5	28
wuv =, w > v, [w, u, v] = -[v, u, w]	30	2	28
$(wu)v =, u \ge v, \ [w, u, v] = +[u, v, w]$	29	1	28
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	28	0	28

The 26 identities included permutations of non-(skew)symmetric identities.

e=28=const. \rightarrow All terms dropped from P were redundant.

Finally $i = 0 \rightarrow All$ redundant terms from P were dropped.

List of used identities is necessary and sufficient for this purpose.

Identities satisfied by Moufang loops (Ruth Moufang 1935) [1]

Identities satisfied by Moufang loops (Ruth Moufang 1935) [1]

Equivalent formulations in terms of associators:

$$\begin{split} w[u,v,w] &= [u,vu,w] = [u,v,wu] \\ [u,v,w]u &= [u,uv,w] = [u,v,uw] \end{split}$$

Reverse Polynomials

Lemma: If P is a polynomial of octonion variables vanishing identically P = 0 then the reverse polynomial R(P) vanishes too, R(P) = 0. Example:

$$\begin{array}{rcl} 0 & = & (v[z,u,w]+[u,v,wz])_{\{v,z\}} \\ 0 & = & ([zw,v,u]+[w,u,z]v)_{\{v,z\}} \end{array}$$

Reverse Polynomials

Lemma: If P is a polynomial of octonion variables vanishing identically P = 0 then the reverse polynomial R(P) vanishes too, R(P) = 0. Example:

$$\begin{array}{rcl} 0 & = & (v[z,u,w]+[u,v,wz])_{\{v,z\}} \\ 0 & = & ([zw,v,u]+[w,u,z]v)_{\{v,z\}} \end{array}$$

are equivalent to

$$0 = [u, v, wz]_{\{u,w\}\{v,z\}}$$

modulo anti-symmetry of associators despite being the result of another symmetrization.

Qualitatively different:

Associator identity not using alternating property, valid for any non-associative algebra

$$0=u[v,w,z]-[uv,w,z]+[u,vw,z]-[u,v,wz]+[u,v,w]z$$

Not useful to remove terms but for manual proofs

Qualitatively different:

Associator identity not using alternating property, valid for any non-associative algebra

0=u[v,w,z]-[uv,w,z]+[u,vw,z]-[u,v,wz]+[u,v,w]z

Not useful to remove terms but for manual proofs Palindrome identity after $u \leftrightarrow z, y \leftrightarrow w$. Reductions require all identities, not only alternative laws. Example: n = d = 4 multilinear case

Reductions	t	i	e
none	120	88	32
wu)v =, w > v, [w, u, v] = -[v, u, w]	72	40	32
$(wu)v =, u \ge v, [w, u, v] = +[u, v, w]$	56	24	32
$wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	40	8	32
$(uv)(wx) =, v \ge x, 0 = [u, v, wz]_{\{v,w\}\{u,z\}}$	32	0	32

Degree 4 Minimal General Polynomials

Reductions require all identities, not only alternative laws. Example: n = d = 4 repeating factors

Reductions	t	i	e
none	1280	992	288
alternative laws	784	496	288
identity in 2 factor products	712	424	288
(wu)v =, w > v, [w, u, v] = -[v, u, w]	520	232	288
$(wu)v =, u \ge v, \ [w, u, v] = +[u, v, w]$	432	144	288
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	344	56	288
$(uv)(wx) =, v \ge x, 0 = [u, v, wz]_{\{v,w\}\{u,z\}}$	288	0	288

Reductions require all identities, not only alternative laws. Example: n = d = 5 multiliear polynomial

Reductions	t	i	e
none	1680	1530	150
wu)v =, w > v, [w, u, v] = -[v, u, w]	790	640	150
$wu)v =, u \ge v, \ [w, u, v] = +[u, v, w]$	525	375	150
$wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	330	180	150
$(uv)(wx) = \dots, v \ge x, 0 = [u, v, wz]_{\{v,w\}\{u,z\}}$	226	76	150

Degree 5 Minimal General Polynomials II

n = d = 5 multiliear polynomial

Reductions	t	i	e
$(pr)(u(qs)) = \dots, p < q, r < s$			
$0 = ([pr(u(qs))] - p(r[uqs]))_{\{pq\}\{rs\}}$	211	61	150
0 = [p, real of degree 4]	186	36	150
$(rp)((qs)u) = \dots, p < q, r < s$			
$0 = (-(rp)[qsu] + p(r[qsu]) - (ps)[rqu] + s(p[rqu]))_{\{pq\}}$	170	20	150
$(pr)(q(su)) = \dots, p < q, q < r, r < s$			
0 = (+[pr(q(su))] + [pr(u(sq))]			
$-[pr(s(qu))] + p(r[qus])))_{pq}_{rs}$	169	19	150
$pr)((sq)u) = \dots, p < q, q < r$			
0 = (-[pr((sq)u)] + [pr(q(su))] + p(u[rsq])			
$-u[(pq)rs] + u(p[qrs]))_{\{pq\}}$	167	17	150

Degree 5 Minimal General Polynomials III

n = d = 5 multiliear polynomial

Reductions	t	i	e
$(pr)((qs)u) = \dots, p < q < r < s < u$			
$0 = (-[pr(s(qu))] + [pr((qs)u)] + p(u[rsq]) - u[pr(qs)])_{\{pq\}}$	166	16	150
(qr)((ps)u), (qr)(u(ps)), (qr)(s(up)), based on 6 longer			
(qr)(s(pu)), (qs)(u(pr)), (qu)(r(sp)) identities	160	10	150
$\begin{tabular}{ll} \hline p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(qs))), p(u(q(sr))) \\ \hline \end{array} \\$			
p(u(r(sq))), p(s(u(qr))), q(r(p(su))), q(r(s(pu))), q(r(u(ps)))			
$0 = (q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr))))_{[uq]\{qrs\}}$	150	0	150

Degree 5 Minimal General Polynomials III

n = d = 5 multiliear polynomial

Reductions	t	i	e
$(pr)((qs)u) = \dots, p < q < r < s < u$			
$0 = (-[pr(s(qu))] + [pr((qs)u)] + p(u[rsq]) - u[pr(qs)])_{\{pq\}}$	166	16	150
(qr)((ps)u), (qr)(u(ps)), (qr)(s(up)), based on 6 longer			
(qr)(s(pu)), (qs)(u(pr)), (qu)(r(sp)) identities	160	10	150
p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(qs))), p(u(q(sr))))			
p(u(r(sq))), p(s(u(qr))), q(r(p(su))), q(r(s(pu))), q(r(u(ps)))			
$0 = (q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr))))_{[uq]\{qrs\}}$	150	0	150

• Last reduction uses 10 identities each with 36 terms *(*(*(*))):

$$0 = (q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr))))_{[uq]\{qrs\}}$$

$$0 = \left(q(r(u(ps))) + r(u(s(qp))) + u(q(p(sr)))\right)_{[ps]\{qrs\}}$$

Degree 5 Minimal General Polynomials III

n = d = 5 multiliear polynomial

Reductions	t	i	e
$\boxed{(pr)((qs)u) = \dots, p < q < r < s < u}$			
$0 = (-[pr(s(qu))] + [pr((qs)u)] + p(u[rsq]) - u[pr(qs)])_{\{pq\}}$	166	16	150
(qr)((ps)u), (qr)(u(ps)), (qr)(s(up)), based on 6 longer			
(qr)(s(pu)), (qs)(u(pr)), (qu)(r(sp)) identities	160	10	150
$\begin{tabular}{ll} \hline p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(qs))), p(u(q(sr))) \\ \hline \end{array} \\$			
p(u(r(sq))), p(s(u(qr))), q(r(p(su))), q(r(s(pu))), q(r(u(ps)))			
$0 = (q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr))))_{[uq]\{qrs\}}$	150	0	150

• Last reduction uses 10 identities each with 36 terms *(*(*(*))):

$$0 = \left(q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr)))\right)_{[uq]\{qrs\}}$$

$$0 = \left(q(r(u(ps))) + r(u(s(qp))) + u(q(p(sr)))\right)_{[ps]\{qrs\}}$$

• Only left multiplications, associativity does not matter, valid for any non-associative algebra

 $\begin{array}{l} \mbox{Apart from the known } [a,b] \circ [c,d] \mbox{ also this is real:} \\ +p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp)) \\ -p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr)) \\ -q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp)) \\ +q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr)) \end{array}$

 $\begin{array}{l} \text{Apart from the known } [a,b] \circ [c,d] \text{ also this is real:} \\ +p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp)) \\ -p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr)) \\ -q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp)) \\ +q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr)) \\ = +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp]) \\ -q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp]) \end{array}$

$$\begin{aligned} \text{Apart from the known } & [a,b] \circ [c,d] \text{ also this is real:} \\ & +p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp)) \\ & -p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr)) \\ & -q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp)) \\ & +q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr)) \\ & = +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp]) \\ & -q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp]) \\ & = +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp]) \end{aligned}$$

Apart from the known
$$[a, b] \circ [c, d]$$
 also this is real:
 $+p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp))$
 $-p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr))$
 $-q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp))$
 $+q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr))$
 $= +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp])$
 $-q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp])$
 $= +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp])$

$$= ([p(q][rs]) + [s(r][qp]))_{\{q,r\}}$$

Apart from the known
$$[a, b] \circ [c, d]$$
 also this is real:
 $+p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp))$
 $-p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr))$
 $-q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp))$
 $+q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr))$
 $= +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp])$
 $-q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp])$
 $= +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp])$

$$= (p(q)[r]) + p(r)[q]) + [s(r)[qp]) + (s(r)[qp]) + (s(r)[qp]))$$

$$= \left(\left[p(q)[rs] \right] + \left[s(r)[qp] \right] \right)_{\{q,r\}} \right)$$

$$= \left((1+R)[p(q][rs]) \right)_{\{q,r\}} = \left((1+R)(p(q(rs))) \right)_{[p,q],[rs],\{q,r\}}$$

Apart from the known $[a, b] \circ [c, d]$ also this is real: +p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp)) -p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr)) -q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp)) +q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr)) = +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp]) -q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp])= +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp])

$$= \left(\left[p(q)[rs] \right) + \left[s(r)[qp] \right) \right)_{\{q,r\}}$$

$$= \left((1+R)[p(q][rs]) \right)_{\{q,r\}} = \left((1+R)(p(q(rs))) \right)_{[p,q],[rs],\{q,r\}}, \text{ also}$$

 $= ([p(q][rs]) + [s(q][rp]))_{\{q,r\}}$

Apart from the known
$$[a, b] \circ [c, d]$$
 also this is real:

$$+p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp)) - p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr)) - q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp)) + q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr))$$

$$= +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp]) - q(s[rp]) - q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp])$$

$$= +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp]) + [s(q][rp])$$

$$= ([p(q][rs]) + [s(r][qp]))_{\{q,r\}} = ((1+R)(p(q(rs))))_{[p,q],[rs],\{q,r\}}, \text{ also}$$

$$= ([p(q][rs]) + [s(q][rp]))_{\{q,r\}}$$

$$= (p(q(rs)))_{[p,q],[rs],\{q,r\}\{p,s\}}$$

July 1-5, 2024

Degree 4 Central Multilinear Polynomials continued

Similarly to
$$(p(q(rs)))_{[p,q],[rs],\{q,r\}\{p,s\}}$$

also $(p(q(rs)))_{[p,q],[rs],\{p,r\}\{q,s\}}$

is a different real degree 4 polynomial.

Degree 4 Central Multilinear Polynomials continued

Similarly to
$$(p(q(rs)))_{[p,q],[rs],\{q,r\}\{p,s\}}$$

also $\left(p(q(rs))\right)_{[p,q],[rs],\{p,r\}\{q,s\}}$

is a different real degree 4 polynomial.

Commutators of the 3 real polynomials with any octonion result in a total of 25 identities of degree 5 (table above).

Degree 4 Central Multilinear Polynomials continued

Similarly to
$$(p(q(rs)))_{[p,q],[rs],\{q,r\}\{p,s\}}$$

also $\left(p(q(rs))\right)_{[p,q],[rs],\{p,r\}\{q,s\}}$

is a different real degree 4 polynomial.

Commutators of the 3 real polynomials with any octonion result in a total of 25 identities of degree 5 (table above).

Changing p(q(rs)) to ((pq)r)s, (pq)(rs), (p(qr))s, p((qr)s) does not give new real polynomials.

Outline

1 Introduction

- 2 Outline of Method
- **3** Octonion Identities
- 4 Motivation
- **5** Computing Idendities
 - Known Polynomials
- 7 All Polynomials

Implementation

9 Results

8

10 Conclusions

D References

• CA systems know non-commutativity but not non-associativity.

- CA systems know non-commutativity but not non-associativity.
- Why not using existing packages, like 'DifferentialGeometry' in MAPLE?

- CA systems know non-commutativity but not non-associativity.
- Why not using existing packages, like 'DifferentialGeometry' in MAPLE?
- Total ordering of octonion products needed to define leading terms of IDs to reduce *P*.

- CA systems know non-commutativity but not non-associativity.
- Why not using existing packages, like 'DifferentialGeometry' in MAPLE?
- Total ordering of octonion products needed to define leading terms of IDs to reduce *P*.
- How to avoid the extremely time-costly splitting of polynomials with, e.g. 250 million terms?

- CA systems know non-commutativity but not non-associativity.
- Why not using existing packages, like 'DifferentialGeometry' in MAPLE?
- Total ordering of octonion products needed to define leading terms of IDs to reduce *P*.
- How to avoid the extremely time-costly splitting of polynomials with, e.g. 250 million terms?
- How to lower cubic cost of solving lin. alg. system with 10^5 equations?

• For each row in the tables do not do 1 run but a sequence of them. Start with smaller number of components than 8n and increase it successively.

• For each row in the tables do not do 1 run but a sequence of them. Start with smaller number of components than 8n and increase it successively.

After each run update relations between coeffs in P.

- For each row in the tables do not do 1 run but a sequence of them. Start with smaller number of components than 8n and increase it successively. After each run update relations between coeffs in P.
- For multilinear *P*, when adding more new components to an octonian variable for the next run, set the other components of the variable temporarily to zero.

- For each row in the tables do not do 1 run but a sequence of them. Start with smaller number of components than 8n and increase it successively. After each run update relations between coeffs in P.
- For multilinear *P*, when adding more new components to an octonian variable for the next run, set the other components of the variable temporarily to zero.
- Fine tune the number of new components per run.

Outline

1 Introduction

- 2 Outline of Method
- **3** Octonion Identities
- 4 Motivation
- 5 Computing Idendities
 - Known Polynomials
- 7 All Polynomials
 - Implementation

9 Results

10 Conclusions

1 References

•
$$w(\partial_t) = 3, \ w(\partial_x) = 1, \ w(u) = 2, \ w(L) = 2$$

• Two solutions have the same evolution equation

$$u_t = u_{xxx} + uu_x + u_x u = u_{xxx} + (u^2)_x$$

• Two slightly different Lax pairs

$$LG = G_{xx} + \frac{1}{3}uG, \quad MG = 4G_{xxx} + 2uG_x + u_xG$$
$$LG = G_{xx} + \frac{1}{3}Gu, \quad MG = 4G_{xxx} + 2G_xu + Gu_x$$

- Weights: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 1 \ (<2)$ first try: w(L) = 1,
- More unknowns: f_i (i = 1, ..., 7), l_i (i = 1, 2, 3), m_i (i = 1, ..., 21)

- Weights: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 1 \ (< 2)$ first try: w(L) = 1,
- More unknowns: f_i (i = 1, ..., 7), l_i (i = 1, 2, 3), m_i (i = 1, ..., 21)
- Six solutions with 5 free parameters each,

- Weights: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 1 \ (<2)$ first try: w(L) = 1,
- More unknowns: f_i (i = 1, ..., 7), l_i (i = 1, 2, 3), m_i (i = 1, ..., 21)
- Six solutions with 5 free parameters each,
- Removing non-relevant gauge terms in MG,
- Scaling u and L,
- Rewrite solution by using product commutators [A, B] = AB BAand associators [A, B, C] = (AB)C - A(BC)

- Weights: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 1 \ (<2)$ first try: w(L) = 1,
- More unknowns: f_i (i = 1, ..., 7), l_i (i = 1, 2, 3), m_i (i = 1, ..., 21)
- Six solutions with 5 free parameters each,
- Removing non-relevant gauge terms in MG,
- Scaling u and L,
- Rewrite solution by using product commutators [A, B] = AB BAand associators [A, B, C] = (AB)C - A(BC)
- Result: 2 evolution equations each with 3 Lax pairs

$$u_t = u_{xxx} + \alpha (u^2 u_x + u u_x u + u_x u^2) + [u, [u_x, u]]$$

$$\begin{split} LG &= G_x - [G, u] + 2Gu \\ MG &= [G, u_{xx}] - 2Gu_{xx} + 2[G, u_x, u] - [G, [u, u_x] + \alpha([G, u^3] - 2Gu^3) \end{split}$$

$$LG = G_x + uG$$
$$MG = -u_{xx}G + 2[u_x, u, G] + [u, u_x]G - \alpha u^3G$$

and a similar Lax pair with G on the left in all products.

$$u_t = u_{xxx} + [u_{xx}, u] + \alpha (u^2 u_x + u u_x u + u_x u^2) + 2[u, [u_x, u]]$$

$$LG = G_x - [G, u] \neq 2Gu$$
$$MG = [G, u_{xx}] + 6[G, u_x, u] + 2[G, [u_x, u]] + \alpha[G, u^3]$$

$$LG = G_x - 2uG - Gu$$

$$MG = -[u_{xx}, G] + 3u_{xx}G + 6[u_x, u, G] - 2[[u_x, u], G]$$

$$-\alpha([u^3, G] - 3u^3G)$$

and a similar Lax pair with G on the left in all products.

New try with next higher w(L) = 2 (> 1)

Result for mKdV-Weights IV

New try with next higher w(L) = 2 (> 1) Results:

• The same evelutionary equations with higher degree Lax pairs

Result for mKdV-Weights IV

New try with next higher w(L) = 2 (> 1) Results:

- The same evelutionary equations with higher degree Lax pairs
- 2 additional evolution equations each with 2 Lax pairs:

$$u_t = u_{xxx} - 3(u^2 u_x + u_x u^2)$$
 (mKdV equation)

$$LG = G_{xx} + (u_x - u^2)G,$$

$$MG = 4G_{xxx} + 6(u_x - u^2)G_x + 3(u_{xx} - (u^2)_x)G$$

and a similar Lax pair with G on the left in all products.

Result for mKdV-Weights IV

New try with next higher w(L) = 2 (> 1) Results:

- The same evelutionary equations with higher degree Lax pairs
- 2 additional evolution equations each with 2 Lax pairs:

$$u_t = u_{xxx} - 3(u^2 u_x + u_x u^2)$$
 (mKdV equation)

$$LG = G_{xx} + (u_x - u^2)G,$$

$$MG = 4G_{xxx} + 6(u_x - u^2)G_x + 3(u_{xx} - (u^2)_x)G$$

and a similar Lax pair with G on the left in all products.

 $u_t = u_{xxx} + 3u_x^2$ (Potential KdV equation)

$$LG = G_{xx} + u_xG, \quad MG = 4G_{xxx} + 6u_xG_x + 3u_{xx}G$$

and a similar Lax pair with G on the left in all products.

Outline

1 Introduction

- 2 Outline of Method
- **3** Octonion Identities
- 4 Motivation
- 5 Computing Idendities
- 5 Known Polynomials
- 7 All Polynomials
 - Implementation
- 9 Results

• minimal general octonion polynomials *multilinear* and with *repeating* factors, both cases for degree 3, 4, 5

- minimal general octonion polynomials *multilinear* and with *repeating* factors, both cases for degree 3, 4, 5
- new compact multilinear vanishing identities and central polynomials of degree 4, 5,

- minimal general octonion polynomials *multilinear* and with *repeating* factors, both cases for degree 3, 4, 5
- new compact multilinear vanishing identities and central polynomials of degree 4, 5,
- term dropping rules applicable also to higher degree polynomials

- minimal general octonion polynomials *multilinear* and with *repeating* factors, both cases for degree 3, 4, 5
- new compact multilinear vanishing identities and central polynomials of degree 4, 5,
- term dropping rules applicable also to higher degree polynomials
- efficient algorithms for computations with octonions

- minimal general octonion polynomials *multilinear* and with *repeating* factors, both cases for degree 3, 4, 5
- new compact multilinear vanishing identities and central polynomials of degree 4, 5,
- term dropping rules applicable also to higher degree polynomials
- efficient algorithms for computations with octonions
- insight into using reverse multiplication to formulate new types of symmetries (multifactor and non-associative generalizations of the commutator and the Jordan product)

• We found the octonion KdV, mKdV and potential KdV equation that possess Lax pairs.

- We found the octonion KdV, mKdV and potential KdV equation that possess Lax pairs.
- The method is (mostly) algorithmic.
 - Inputs are $w(\partial_t), w(\partial_x), w(u), w(L)$.
 - The scaling homogeneous ansatz polynomials for F, LG, MG are generated by a separate program, which automatically uses octonion identities up to degree 4 to eliminate redundant terms of degree ≥ 4 .
 - Currently Maple formulates the overdetermined systems.
 - Solution is done by Maple (simple cases) or 'Crack' (larger cases).
 - Start at the lowest possible w(L) and later increase the weight to search for additional variants of evolution equation finally limited by complexity.

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation
- Future work:
 - Find and use higher degree identities of octonions to produce general polynomial ansatz for F, LG, MG with minimal number of terms.

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation
- Future work:
 - Find and use higher degree identities of octonions to produce general polynomial ansatz for F, LG, MG with minimal number of terms.
 - Rewrite in REDUCE what is currently in MAPLE

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation
- Future work:
 - Find and use higher degree identities of octonions to produce general polynomial ansatz for F, LG, MG with minimal number of terms.
 - Rewrite in REDUCE what is currently in MAPLE
 - Run 5th order evolution equations

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation
- Future work:
 - Find and use higher degree identities of octonions to produce general polynomial ansatz for F, LG, MG with minimal number of terms.
 - Rewrite in REDUCE what is currently in MAPLE
 - Run 5th order evolution equations
 - Run other scaling weights: $w(u) = \frac{1}{2}$ (e.g. Ibragimov-Shabat equation)

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation
- Future work:
 - Find and use higher degree identities of octonions to produce general polynomial ansatz for F, LG, MG with minimal number of terms.
 - Rewrite in REDUCE what is currently in MAPLE
 - Run 5th order evolution equations
 - Run other scaling weights: $w(u) = \frac{1}{2}$ (e.g. Ibragimov-Shabat equation)
 - Add complex conjugation u, \bar{u} (e.g. NLS equation)

Outline

1 Introduction

- 2 Outline of Method
- **3** Octonion Identities
- 4 Motivation
- 5 Computing Idendities
- 5 Known Polynomials
- 7 All Polynomials
- Implementation
- 9 Results

10 Conclusions

1 References

References I

- Ruth Moufang (1935), "Zur Struktur von Alternativkörpern", Math. Ann., 110: 416–430, doi:10.1007/bf01448037
- John C. Baez "The Octonions", https://arxiv.org/abs/math/0105155
- Michel L. Racine, "Minimal identities of octonion algebras", Journal of Algebra Volume 115, Issue 1, 15 May 1988, Pages 251-260 https://www.sciencedirect.com/science/article/pii/0021869388902943
- - Irvin R. Hentzel, Luiz A. Peresi "Identities of Cayley-Dickson Algebras" Journal of Algebra 188, 292-309 (1997)
 - Ivan Shestakov, Natalia Zhukavets, "Skew-symmetric identities of octonions", Journal of Pure and Applied Algebra 213 (2009) 479–492

References II

- A.Restuccia, A.Sotomayor, J.P.Veiro, "Integrability of the Korteweg-de Vries equation valued on a Cayley-Dickson algebra", arXiv:1609.05410v1 [math-ph] 18 Sep 2016
- A. Restuccia, A. Sotomayor (2017). Singular Lagrangians and Its Corresponding Hamiltonian Structures. In H. Canbolat (Ed.), Lagrangian Mechanics (pp. Ch. 1). IntechOpen.
- A. Restuccia, A. Sotomayor, J.P. Veiro (2018). A new integrable equation valued on a Cayley-Dicksonalgebra. Journal Physics A: Mathematical and Theoretical 51 (34), 345203.
- M. Fernandez, A. Restuccia, A. Sotomayor. (2019). On the hamiltonian formulation of an octonionic integrable extension for the Korteweg-de Vries equation. Journal of Physics: Conference Series 1391 (1), 012151.
- Julia Cen, Andreas Fring, "Multicomplex solitons". Journal of Nonlinear Mathematical Physics, Vol. 27, No. 1 (2020) 17–35 https://link.springer.com/content/pdf/10.1080/14029251.2020.1683963.pdf

Thank you!