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About Lax Pairs

An evolution equation ut = F (u, ux, uxx, . . . ) is said to be
integrable if it has a Lax Pair L and M that are linear differential
operators in terms of ∂x with coefficients in u, ux, uxx, .. satisfying

Lt = [M,L]

identically in all u, ux, uxx, .. iff ut = F .

Lax pair is used in the inverse scattering transform to generate
multi-soliton solutions which have many physical applications.

Two well known examples:

ut = uux + uxxx Korteweg-De Vries (KdV) equation

L = ∂2
x +

1
6u, M = 4∂3

x + u∂x +
1
2ux (w(L) = 2)

ut = u2ux + uxxx modified Korteweg-De Vries (mKdV) equation

L = ∂x + u, M = −uxx − 1
3u

3 (w(L) = 1)

L = ∂2
x + 2u∂x + u2 + ux, M = −uxx − 1

3u
3 (w(L) = 2)
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About Octonions I

Cayley-Dickson construction: real, complex, quaternions,
octonions, sedenions,... by introducing 1 new imaginary number
each time

8-dimensional algebra formed by 1 real and 7 imaginary basis
elements

normed division algebra over the real numbers
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About Octonions II

noncommutative, nonassociative

but
alternative: x(xy) = (xx)y, (yx)x = y(xx),
as a consequence the
associator [x, y, z] := (xy)z − x(yz)
satisfies
[x, x, y] = [y, x, x] = 0
and as a consequence of that also
[x, y, x] = 0.
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Applications of Octonions

appear in attempts to understand and extend the Standard Model
of elementary particle physics and string theory C. Furey, Phys.

Rev. D 86, 025024 (2012); T.P.Singh, Z.Naturforsch. A 75, 1051 (2020)

other applications in quantum logic, special relativity and
supersymmetry John C. Baez https://arxiv.org/abs/math/0105155

(2002)

little literature exists on specific integrable evolution equations
over octonions A. Restuccia, A. Sotomayor, J.P. Veiro,

arXiv:1609.05410v1 [math-ph] (2016)
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Goal

Integrable scalar evolution equations have been extended to
multi-component (coupled) evolution equations (e.g. over vectors,
matrices, Lie algebras, graded algebras).

This project: Integrable evolution equations over the octonions

Start with KdV and mKdV type that have a Lax pair

Later goal: Classification
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General Idea

Select weights for ∂t, ∂x, u, L,
e.g. KdV-scaling: w(∂t) = 3, w(∂x) = 1, w(u) = 2, and start with
w(L) = 2
→ w(M) = w(Lt)− w(L) = w(∂t) = 3
→ w(F ) = w(u) + w(∂t) = 5

Make general homogenous polynomial ansatz for F (= ut), L,M
with undetermined constant coefficients fj , lj ,mj and octonion
variables u, ux, uxx, ...

Formulate Lt = [M,L]

Split wrt. u, ux, uxx, ...

Solve the overdetermined non-linear polynomial system for
unknown coefficients fj , lj ,mj to obtain the integrable equation
ut = F and Lax pair L,M .
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Adapting to Non-commutativity and Non-Associativity

Instead of linear differential operators L,M

Introduce zero weight G(x)

Make polynomial ansatz for LG,MG, linear homogeneous in
G,Gx, ....

Instead of LtG = [M,L]G formulate (LG)t = M(LG)− L(MG).

To compute (LG)t replace ut = F, utx = dF/dx, ....

To compute M(LG) replace in MG each G,Gx, .. ’in place’ by
LG, (LG)x, ...

To compute L(MG) replace in LG each G,Gx, .. ’in place’ by
MG, (MG)x, ...
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KdV Example

KdV-scaling: w(∂t) = 3, w(∂x) = 1, w(u) = 2, try w(LG) = w(L) = 2
→ w(F ) = w(u) + w(∂t) = 5
→ w(MG) = w(M) = w(∂t) = 3

F = f1uxxx + f2uux + f3uxu

LG = l1Gxx + l2Gu+ l3uG

MG = m1Gxxx +m2Gxu+m3uGx +m4Gux +m5uxG

(LG)t = l2GF + l3FG

L(MG) = l1(MG)xx + l2(MG)u+ l3u(MG)

M(LG) = m1(LG)xxx +m2(LG)xu+m3u(LG)x +

m4(LG)ux +m5ux(LG)

Problem: For high w(∂t), w(L) and low w(∂x), w(u) the number of
terms goes into the 100s..1000s
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Adapting to Identities for Octonions

Spliting wrt. u, ux, uxx, ... is too restrictive because of
polynomial identities of octonions, like
0 = (wu)v − w(uv) + (vu)w − v(uw)

Instead

Replace u, ux, .. by their component form u =
∑7

i=0 ui(x, t)ei, ...

Split wrt. ei, ui, uxi, ...

Consequences:

Huge computational cost,

A new necessary research project:
Find and use all octonion identities, not only the known fully
antisymmetric ones and also those with repeating factors in a term
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Algebraic Challenges

Is a given octonion polynomial identically zero?

How to simplify an octonion polynomial?

How to decide ideal membership?

Find all identically vanishing polynomials up to some degree.

Find all central (real) polynomials up to some degree.
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Vanishing Identities P = 0

Outline

Formulate a general polynomial P of degree d in n octonion
variables u, .. with undetermined coefficients ck

Replace variables by their component form, e.g. u =
∑7

i=0 uiei

Split P = 0 w.r.t. ei, ui, ...

Solve the linear system for the undetermined coefficients ck

Substitute general solution into P

Get all IDs (identities) as coefficients of free parameters in P

Find linear combinations of identities and permutations of them
that are short, highly symmetric to allow a compact formulation.
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The Computational Complexity of Multilinearity

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)

m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : d!×m(d) (multilinearity)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6 7 8
m 1 1 2 5 14 42 132 429
t 1 2 12 120 1680 30240 6.65× 105 1.69× 107

τ 8 128 6140 491520 55× 106 7.9× 109 1.39× 1012 2.84× 1014

c 8 16 24 32 40 48 56 64
i 0 0 5 88 1530 ? ? ?
e 1 2 7 32 150 ? ? ?
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The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)

m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)

τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n

i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0

e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42

t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48

i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0

26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26

992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992

40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375

?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



The Computational Complexity of Repeating Factors

n = number of octonion variables u, v, w.. (in application u, ux, u2x, ..)
d = degree of polynomial P (u, v, ..) (in the application P = L,M)
m= # of different ways to non-associative multiply the d factors of 1 term,

m(1) = 1, m(d) =
∑d−1

i=1 m(i)×m(d− i) (recursive formula summing
over all d− 1 options for the last of the d− 1 multiplications)

t = # of terms of P : nd ×m(d) (factors may repeat)
τ = # of terms of P in expanded form = t× 8d

c = # of real/imag. components of all octonion variables = 8n
i = # of identities = # of free coeff. in general solution of P = 0
e = # of essential terms in P which is t− z

d = n 1 2 3 4 5 6
m 1 1 2 5 14 42
t 1 4 54 1280 43750 1.95× 106

τ 8 256 9213 5.24× 106 1.4336× 109 5.13× 1011

c 8 16 24 32 40 48
i 0 0 26 992 40375 ?
e 1 4 28 288 3375 ?

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 19 / 64



Central Polynomials

A polynomial P = P (x, y, . . .) is a central polynomial if P is real for
any octonion variables x, y, ... and thus commutes with any other
octonian variable u:

[P, u] = 0

and thus also satisfies the vanishing identity

[P, u, v] = (Pv)w − P (vw) = P (vw)− P (vw) = 0

for any octonions u, v.

Same procedure to compute them, only ignore coefficient of e0 after
splitting w.r.t. ei.
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Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4],
Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4: [a, b] ◦ [c, d], (1)

where x ◦ y := xy + yx,

degree 5:
∑
alt

{24a(b(c(de))) + 8a([b, c, d]e)− 11[a, b, [c, d, e]]}, (2)

where
∑

is the alternating sum over the arguments.

degree 6: No new ones.

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 22 / 64



Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4],
Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4: [a, b] ◦ [c, d], (1)

where x ◦ y := xy + yx,

degree 5:
∑
alt

{24a(b(c(de))) + 8a([b, c, d]e)− 11[a, b, [c, d, e]]}, (2)

where
∑

is the alternating sum over the arguments.

degree 6: No new ones.

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 22 / 64



Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4],
Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4: [a, b] ◦ [c, d], (1)

where x ◦ y := xy + yx,

degree 5:
∑
alt

{24a(b(c(de))) + 8a([b, c, d]e)− 11[a, b, [c, d, e]]}, (2)

where
∑

is the alternating sum over the arguments.

degree 6: No new ones.

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 22 / 64



Known Minimal Degree Identities

degree 1, 2: None
degree 3: Just the alternative laws
degree 4: No new ones
degree 5: [[a, b] ◦ [c, d], e] = 0, (3)

P 3(x
2)− P 3(x) ◦ x = 0, (4)

where Vx(y) := x ◦ y and P 3 is defined by

P 3 = VaVbVc + VcVaVb + VbVcVa − VbVaVc − VaVcVb − VcVbVa

degree 6:[∑
alt

{24a(b(c(de))) + 8a([b, c, d]e)− 11[a, b, [c, d, e]]}, f

]
= 0, (5)
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Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u, v] = 0, [v, u, u] = 0 give

[u, v, w] = [u, v, w]− [u+ w, v, u+ w] = ... = −[w, v, u]

and further total antisymmetry:

[u, v, w] = [v, w, u] = [w, u, v] = −[v, u, w] = −[u,w, v] = −[w, v, u]

This is an example for equivalence of a (not fully skey symmetric
3-variable ID to a 2-variable IDs.

Such IDs of degree > 3 are not systematically investigated sofar but
needed for reducing polynomials.
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Degree 3 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
n = d = 3 with repeating factors

Reductions t i e

none 54 26 28

alternative laws 33 5 28

(wu)v = ..., w > v, [w, u, v] = −[v, u, w] 30 2 28

(wu)v = ..., u ≥ v, [w, u, v] = +[u, v, w] 29 1 28

(wu)v = ..., w ≥ u, [w, u, v] = +[v, w, u] 28 0 28

The 26 identities included permutations of non-(skew)symmetric
identities.

e=28=const. → All terms dropped from P were redundant.

Finally i = 0 → All redundant terms from P were dropped.

List of used identities is necessary and sufficient for this purpose.
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identities.

e=28=const. → All terms dropped from P were redundant.

Finally i = 0 → All redundant terms from P were dropped.

List of used identities is necessary and sufficient for this purpose.
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Degree 4 Minimal General Polynomials

Identities satisfied by Moufang loops (Ruth Moufang 1935) [1]

z(x(zy)) = ((zx)z)y

x(z(yz)) = ((xz)y)z

(zx)(yz) = (z(xy))z

(zx)(yz) = z((xy)z)

Equivalent formulations in terms of associators:

w[u, v, w] = [u, vu, w] = [u, v, wu]

[u, v, w]u = [u, uv, w] = [u, v, uw]
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Reverse Polynomials

Lemma: If P is a polynomial of octonion variables vanishing
identically P = 0 then the reverse polynomial R(P ) vanishes too,
R(P ) = 0.
Example:

0 = (v[z, u, w] + [u, v, wz]){v,z}
0 = ([zw, v, u] + [w, u, z]v){v,z}

are equivalent to

0 = [u, v, wz]{u,w}{v,z}

modulo anti-symmetry of associators despite being the result of
another symmetrization.
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An Identity for General Non-associative Algebras

Qualitatively different:
Associator identity not using alternating property, valid for any
non-associative algebra

0 = u[v, w, z]− [uv,w, z] + [u, vw, z]− [u, v, wz] + [u, v, w]z

Not useful to remove terms but for manual proofs

Palindrome identity after u ↔ z, y ↔ w.

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 29 / 64



An Identity for General Non-associative Algebras

Qualitatively different:
Associator identity not using alternating property, valid for any
non-associative algebra

0 = u[v, w, z]− [uv,w, z] + [u, vw, z]− [u, v, wz] + [u, v, w]z

Not useful to remove terms but for manual proofs

Palindrome identity after u ↔ z, y ↔ w.

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 29 / 64



Degree 4 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
Example: n = d = 4 multilinear case

Reductions t i e

none 120 88 32

(wu)v = ..., w > v, [w, u, v] = −[v, u, w] 72 40 32

(wu)v = ..., u ≥ v, [w, u, v] = +[u, v, w] 56 24 32

(wu)v = ..., w ≥ u, [w, u, v] = +[v, w, u] 40 8 32

(uv)(wx) = ..., v ≥ x, 0 = [u, v, wz]{v,w}{u,z} 32 0 32
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Degree 4 Minimal General Polynomials

Reductions require all identities, not only alternative laws.
Example: n = d = 4 repeating factors

Reductions t i e

none 1280 992 288

alternative laws 784 496 288

identity in 2 factor products 712 424 288

(wu)v = ..., w > v, [w, u, v] = −[v, u, w] 520 232 288

(wu)v = ..., u ≥ v, [w, u, v] = +[u, v, w] 432 144 288

(wu)v = ..., w ≥ u, [w, u, v] = +[v, w, u] 344 56 288

(uv)(wx) = ..., v ≥ x, 0 = [u, v, wz]{v,w}{u,z} 288 0 288
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Degree 5 Minimal General Polynomials I

Reductions require all identities, not only alternative laws.
Example: n = d = 5 multiliear polynomial

Reductions t i e

none 1680 1530 150

(wu)v = ..., w > v, [w, u, v] = −[v, u, w] 790 640 150

(wu)v = ..., u ≥ v, [w, u, v] = +[u, v, w] 525 375 150

(wu)v = ..., w ≥ u, [w, u, v] = +[v, w, u] 330 180 150

(uv)(wx) = ..., v ≥ x, 0 = [u, v, wz]{v,w}{u,z} 226 76 150

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 32 / 64



Degree 5 Minimal General Polynomials II

n = d = 5 multiliear polynomial

Reductions t i e

(pr)(u(qs)) = ..., p < q, r < s
0 = ([pr(u(qs))]− p(r[uqs])){pq}{rs} 211 61 150

0 = [p, real of degree 4] 186 36 150
(rp)((qs)u) = ..., p < q, r < s
0 = (−(rp)[qsu] + p(r[qsu])− (ps)[rqu] + s(p[rqu])){pq} 170 20 150

(pr)(q(su)) = ..., p < q, q < r, r < s
0 = (+[pr(q(su))] + [pr(u(sq))]

−[pr(s(qu))] + p(r[qus]))){pq}{rs} 169 19 150

(pr)((sq)u) = ..., p < q, q < r
0 = (−[pr((sq)u)] + [pr(q(su))] + p(u[rsq])

−u[(pq)rs] + u(p[qrs])){pq} 167 17 150
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Degree 5 Minimal General Polynomials III

n = d = 5 multiliear polynomial

Reductions t i e

(pr)((qs)u) = ..., p < q < r < s < u
0 = (−[pr(s(qu))] + [pr((qs)u)] + p(u[rsq])− u[pr(qs)]){pq} 166 16 150

(qr)((ps)u), (qr)(u(ps)), (qr)(s(up)), based on 6 longer
(qr)(s(pu)), (qs)(u(pr)), (qu)(r(sp)) identities 160 10 150
p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(qs))), p(u(q(sr)))
p(u(r(sq))), p(s(u(qr))), q(r(p(su))), q(r(s(pu))), q(r(u(ps)))
0 = (q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr))))[uq]{qrs} 150 0 150

Last reduction uses 10 identities each with 36 terms ∗(∗(∗(∗∗))):

0 =
(
q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr)))

)
[uq]{qrs}

0 =
(
q(r(u(ps))) + r(u(s(qp))) + u(q(p(sr)))

)
[ps]{qrs}

Only left multiplications, associativity does not matter,
valid for any non-associative algebra
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Degree 4 Central Multilinear Polynomials

Apart from the known [a, b] ◦ [c, d] also this is real:

+p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp))

−p(q(sr))− p(r(sq))− s(r(pq))− s(q(pr))

−q(p(rs))− r(p(qs))− r(s(qp))− q(s(rp))

+q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr))

= +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp])

−q(p[rs])− r(p[qs])− r(s[qp])− q(s[rp])

= +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp])

=
(
[p(q][rs]) + [s(r][qp])

)
{q,r}

=
(
(1 +R)[p(q][rs])

)
{q,r} =

(
(1 +R)(p(q(rs)))

)
[p,q],[rs],{q,r}, also

=
(
[p(q][rs]) + [s(q][rp])

)
{q,r}

=
(
p(q(rs))

)
[p,q],[rs],{q,r}{p,s}
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Degree 4 Central Multilinear Polynomials continued

Similarly to
(
p(q(rs))

)
[p,q],[rs],{q,r}{p,s}

also
(
p(q(rs))

)
[p,q],[rs],{p,r}{q,s}

is a different real degree 4 polynomial.

Commutators of the 3 real polynomials with any octonion result in a
total of 25 identities of degree 5 (table above).

Changing p(q(rs)) to ((pq)r)s, (pq)(rs), (p(qr))s, p((qr)s)
does not give new real polynomials.
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General

CA systems know non-commutativity but not non-associativity.

Why not using existing packages, like ’DifferentialGeometry’ in
Maple?

Total ordering of octonion products needed to define leading terms
of IDs to reduce P .

How to avoid the extremely time-costly splitting of polynomials
with, e.g. 250 million terms?

How to lower cubic cost of solving lin. alg. system with 105

equations?
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Algorithmic Changes

For each row in the tables do not do 1 run but a sequencee of
them. Start with smaller number of components than 8n and
increase it successively.

After each run update relations between coeffs in P .

For multilinear P , when adding more new components to an
octonian variable for the next run, set the other components of the
variable temporarily to zero.

Fine tune the number of new components per run.
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Result for KdV-Weights

w(∂t) = 3, w(∂x) = 1, w(u) = 2, w(L) = 2

Two solutions have the same evolution equation

ut = uxxx + uux + uxu = uxxx + (u2)x

Two slightly different Lax pairs

LG = Gxx +
1
3uG, MG = 4Gxxx + 2uGx + uxG

LG = Gxx +
1
3Gu, MG = 4Gxxx + 2Gxu+Gux
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Result for mKdV-Weights I

Weights: w(∂t) = 3, w(∂x) = 1, w(u) = 1 (< 2) first try: w(L) = 1,

More unknowns: fi (i = 1, . . . , 7), li (i = 1, 2, 3), mi (i = 1, . . . , 21)

Six solutions with 5 free parameters each,

Removing non-relevant gauge terms in MG,

Scaling u and L,

Rewrite solution by using product commutators [A,B] = AB−BA
and associators [A,B,C] = (AB)C −A(BC)

Result: 2 evolution equations each with 3 Lax pairs
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Result for mKdV-Weights II

ut = uxxx + α(u2ux + uuxu+ uxu
2) + [u, [ux, u]]

LG = Gx − [G, u] + 2Gu

MG = [G, uxx]− 2Guxx + 2[G, ux, u]− [G, [u, ux] + α([G, u3]− 2Gu3)

LG = Gx + uG

MG = −uxxG+ 2[ux, u,G] + [u, ux]G− αu3G

and a similar Lax pair with G on the left in all products.
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Result for mKdV-Weights III

ut = uxxx+[uxx, u] + α(u2ux + uuxu+ uxu
2) + 2[u, [ux, u]]

LG = Gx − [G, u] ����+2Gu

MG = [G, uxx] + 6[G, ux, u] + 2[G, [ux, u]] + α[G, u3]

LG = Gx−2uG−Gu

MG = −[uxx, G] + 3uxxG+ 6[ux, u,G]− 2[[ux, u], G]

− α([u3, G]− 3u3G)

and a similar Lax pair with G on the left in all products.
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Result for mKdV-Weights IV

New try with next higher w(L) = 2 (> 1)

Results:

The same evelutionary equations with higher degree Lax pairs

2 additional evolution equations each with 2 Lax pairs:

ut = uxxx − 3(u2ux + uxu
2) (mKdV equation)

LG = Gxx + (ux − u2)G,

MG = 4Gxxx + 6(ux − u2)Gx + 3(uxx − (u2)x)G

and a similar Lax pair with G on the left in all products.

ut = uxxx + 3u2x (Potential KdV equation)

LG = Gxx + uxG, MG = 4Gxxx + 6uxGx + 3uxxG

and a similar Lax pair with G on the left in all products.
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Conclusion I on Octonion Identities

We obtained

minimal general octonion polynomials multilinear and with
repeating factors, both cases for degree 3, 4, 5

new compact multilinear vanishing identities and central
polynomials of degree 4, 5,

term dropping rules applicable also to higher degree polynomials

efficient algorithms for computations with octonions

insight into using reverse multiplication to formulate new types of
symmetries (multifactor and non-associative generalizations of the
commutator and the Jordan product)
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Conclusion II on Equations and Methods

We found the octonion KdV, mKdV and potential KdV equation
that possess Lax pairs.

The method is (mostly) algorithmic.

Inputs are w(u), w(∂x), w(∂t), w(L).
The scaling homogeneous ansatz polynomials for F,LG,MG are
generated by a separate program, which automatically uses octonion
identities up to degree 4 to eliminate redundant terms of degree ≥ 4.
Currently Maple formulates the overdetermined systems.
Solution is done by Maple (simple cases) or ’Crack’ (larger cases).
Start at the lowest possible w(L) and later increase the weight to
search for additional variants of evolution equation finally limited
by complexity.
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Conclusion III on Outlook

Different Lax pairs may be useful for different purposes.

Inverse scattering transformation (IST)
Darboux transformation

Future work:

Find and use degree > 5 identities of octonions to produce general
polynomial ansatz for F,LG,MG with minimal number of terms.
(✓) Rewrite in Reduce what is currently in Maple
(✓) Run 5th order evolution equations
(✓) Run other scaling weights: w(u) = 1

2 (e.g. Ibragimov-Shabat
equation)
Add complex conjugation u, ū (e.g. NLS equation)
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Computational Progress

Complete re-write in Reduce and using Crack for solving
bi-linear overdetermined system

→ allowing to check 5th order equations with low L weight

For solving larger bi-linear overdetermined system (eg. 2000
equations) for (eg. 100) unknown coefficients:

Closing a 40 year old, publicly unknown, memory drain in the
computer algebra system Reduce when loading data files,
→ now unlimited many case distinctions
→ new bottlenecks showing up
Detailed heuristic to minimize # of case distinctions
Adapting solution strategy to new module strengths

Apply scaling freedom of L, t, x, u and M → M + αLn to
reduce # of unknown coefficients
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About Reverse Duality

Reversing factors:

↔ a · (b · c)
c · (b · a) or ↔ (a · b) · (c · (d · e))

(e · d) · (c · (b · a))

If an octonion polynomial is zero then the factor reversed version
is also zero.
→ An octonion identity is either palindromic or there exists a
reverse dual version of it.
→ For each evol. eqn. + Lax pair there is a reverse version unless
it is palindromic.

Symmetry broken use of identities → non-symmetric Lax pairs

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 52 / 64



About Reverse Duality

Reversing factors:

↔ a · (b · c)
c · (b · a) or ↔ (a · b) · (c · (d · e))

(e · d) · (c · (b · a))
If an octonion polynomial is zero then the factor reversed version
is also zero.

→ An octonion identity is either palindromic or there exists a
reverse dual version of it.
→ For each evol. eqn. + Lax pair there is a reverse version unless
it is palindromic.

Symmetry broken use of identities → non-symmetric Lax pairs

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 52 / 64



About Reverse Duality

Reversing factors:

↔ a · (b · c)
c · (b · a) or ↔ (a · b) · (c · (d · e))

(e · d) · (c · (b · a))
If an octonion polynomial is zero then the factor reversed version
is also zero.
→ An octonion identity is either palindromic or there exists a
reverse dual version of it.

→ For each evol. eqn. + Lax pair there is a reverse version unless
it is palindromic.

Symmetry broken use of identities → non-symmetric Lax pairs

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 52 / 64



About Reverse Duality

Reversing factors:

↔ a · (b · c)
c · (b · a) or ↔ (a · b) · (c · (d · e))

(e · d) · (c · (b · a))
If an octonion polynomial is zero then the factor reversed version
is also zero.
→ An octonion identity is either palindromic or there exists a
reverse dual version of it.
→ For each evol. eqn. + Lax pair there is a reverse version unless
it is palindromic.

Symmetry broken use of identities → non-symmetric Lax pairs

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 52 / 64



About Reverse Duality

Reversing factors:

↔ a · (b · c)
c · (b · a) or ↔ (a · b) · (c · (d · e))

(e · d) · (c · (b · a))
If an octonion polynomial is zero then the factor reversed version
is also zero.
→ An octonion identity is either palindromic or there exists a
reverse dual version of it.
→ For each evol. eqn. + Lax pair there is a reverse version unless
it is palindromic.

Symmetry broken use of identities → non-symmetric Lax pairs

T. Wolf, S. Anco, P. Lam Octonic Integrable PDEs December 2, 2024 52 / 64



w(u)/w(∂x) = 2

w(u) w(∂x) w(∂t) w(L) Comments
2 1 3 2 KdV: ut = uxu+ uux + u3x

3 sol: 2 reverse dual L,M , 1 palindromic L,M

4,6,8 same ut, L4 = L 2
2 , L6 = L 3

2 , L8 = L 4
2 , both L not

sym. anymore due to non-sym. use of identities
5 2 ut = 5u3xu+ 10u2xux + 2ux(uu) + 10uxu2x

+2u(uxu) + 2u(uux) + 5uu3x + 5u5x

palindromic ut, 2 symmetric L, both MG not
symm., due to non-symm. identity usage
real limit: ut = 5u5x + 10uu3x + 20uxu2x + 6u2ux

real ut = u3x + 2uux has symmetry
uτ = 3u5x + 10uu3x + 20uxu2x + 10u2ux

scaling u, x, t merge both,
Kaup-Kupershmidt:ut = ..+ 10uu3x + 25uxu2x + ..

Sawata-Kotera: ut = ..+ 15uu3x + 15uxu2x + ..

4,6 same ut, L4 = L 2
2 , L6 = L 3

2

7 2,4 palindromic ut = 21 terms, L4 = L 2
2 , hypothesis:

LG = Gu+ w(∂t)G2x, LG = uG+ w(∂t)G2x
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w(u)/w(∂x) = 1
w(u) w(∂x) w(∂t) w(L) Comments
1 1 3 1 6 sol, all generalized mKdV: palindromic 1. sol:

ut = a(ux(uu) + u(uxu)(1 + 3a) + u(uux)) + u3x

LG = auG+Gx , 2. sol with reverse L,M
3. sol: ut = a(ux(uu) + u(uxu)(1 + 6ab2)

+u(uux) + b[u, u2x] + u3x, LG = b[G, u] +Gx

4. sol like 1.,2. but slightly different L,M
5. sol like 3. but slightly different L,M
6. sol like 3. but again slightly different L,M

2 10 sol, 6 soln like for w(L) = 1 only
with higher weight L.
4 sol for potential KdV ut = 3u 2

x + u3x

3 6 sol, same ut as for w(L) = 1, higher weight L
4 14 sol, apart from all above, also solns with

ut = −a2(ux(uu) + u(uux)) + 3ux and
ut = au2xu+ bux(uu) + cu(uux) + u3x

with symmetries of real limit up to order 13:
uτ = 3tu3x + 3atuu2x + 3btu2ux + xux + u
uτ = ux
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w(u)/w(∂x) = 1 continued

w(u) w(∂x) w(∂t) w(L) Comments
1 1 5 1 6 soln, need to be re-computed using higher

degree identities to be simpler and usable

1 1 5 2 10 soln, 8 of them need to use higher degree
identities in a re-computation to get simpler
result, 2 soln have palindromic ut:
ut = u3xux + u 2

2x + 2
5
u 3
x + uxu3x + u5x

LG = uxG+ 5Gx , 2. sol with reverse L,M
Hypothesis: for odd w(∂t) :
LG = uxG+ w(∂t)G2x + reverse L,M
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w(u)/w(∂x) = 1/2

w(u) w(∂x) w(∂x) w(L) Comments
1 2 3 1 3 sol all like ut = auxu+ buux. The special case

of anti-palindromiC ut = [u, ux] has palindromic
LG = uG+Gu and anti-palin. MG = [G, ux]

2..5 3 sol, all like for w(L) = 1 with same symmetry
properties, only with L having one more u as
factor for each increased w(L). Example:
L2 = u2G or = Gu2 or = a(u2G+Gu2) + buGu

4 1..5 no solutions
5 1 anti-palindromic: ut = [u, u2x] with

arbitrary multiples of products uxu
3 in all

multiplication orders of u, ux being compatible
6 1..4 (Ibragimov-Shabat) no solutions
7 1 ut = [u3x, u], LG = uG,MG = u3xG+ 2Gu3x

and 5 other solution
7 2 6 sol, needs re-run using higher deree identities

1 sol: ut = [u3x, u], LG = uG,MG = u3xG+ 2Gu3x
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w(u)/w(∂x) = 3/2

w(u) w(∂x) w(∂x) w(L) Comments
3 2 5 3 3 sol, 1: ut = auxu+ buux, 2: rev sym soln

3: special case: anti-palindromic ut = [u, ux]

palin. LG = uG+Gu, anti-pal. MG = [G, ux]

6,9,12 as above with 1 extra u in LG
11 1 sol, same as 3. sol of w(L) = 3 but

with higher degree LG
7 3,6,9,12 3 sol, all ut = [u, u2x], same MG

2 sol reverse sym, the 3rd palindromic
2 sol with ut = u 2

x both reverse sym.
11,13,14 1 sol ut like 3. sol of w(L) = 3

9 3,6,9 3 sol like w(∂t) = 5, w(L) = 3
only with ut = [u, u3x]

5,10 3 sol like w(∂t) = 5, w(L) = 3
only with ut = [ux, u2x]

11 3,6,9 3 sol with ut = [u, u4x] + auxu
3 + buuxu

2

+cu2uxu+ du3ux

11 11 1 sol with same ut
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11 1 sol, same as 3. sol of w(L) = 3 but

with higher degree LG
7 3,6,9,12 3 sol, all ut = [u, u2x], same MG

2 sol reverse sym, the 3rd palindromic

2 sol with ut = u 2
x both reverse sym.

11,13,14 1 sol ut like 3. sol of w(L) = 3
9 3,6,9 3 sol like w(∂t) = 5, w(L) = 3

only with ut = [u, u3x]
5,10 3 sol like w(∂t) = 5, w(L) = 3

only with ut = [ux, u2x]
11 3,6,9 3 sol with ut = [u, u4x] + auxu

3 + buuxu
2

+cu2uxu+ du3ux

11 11 1 sol with same ut
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Conclusion IV on Observations

Increasing w(L) can show new integrable equations with same
other weights (eg. mKdV → potential KdV).

If a set of weights of u, ∂x, ∂t, L includes an integrable equation
then increasing w(L) in fixed intervals gives more lax pairs for
same equation.

Increasing w(∂t) in fixed intervals show higher symmetries of
integrable equations.
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Outstanding Computational Challenges

Goal: Find octonion version of Ibragimov-Shabat, Kaup
Kupershmidt, Sawata Kotera if they exist
→ Checking higher weights of L

Trying to determine and use all 6th degree octonion identities

Last resort in solving non-lin. alg. system: Groebner basis
computation
→ implement dynamically changing ordering of variables
→ implement dynamical detection of overdet. sub-systems
→ add probabilistic module selection instead of rigid heuristic
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Outstanding Mathematical Challenges

Use Lax pairs to compute other features of integrability.

Are multiple Lax pairs useful for anything?

Is there some upper bound for the weight (degree) of L for a Lax
Pair to exit for a given integrable octonion equation?
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The End

Thank you!
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