Towards a classification of evolution equations with Lax pairs over the octonions

2024 CMS Winter Meeting — Vancouver

T. Wolf, S. Anco, P. Lam

Brock University, St Catharines

December 2, 2024

Outline

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- 10 Conclusions
- Results since May 2024
- 12 References

• An evolution equation $u_t = F(u, u_x, u_{xx}, \dots)$ is said to be integrable if it has a **Lax Pair** L and M that are linear differential operators in terms of ∂_x with coefficients in u, u_x, u_{xx}, \dots satisfying

$$L_t = [M, L]$$

identically in all $u, u_x, u_{xx}, ...$ iff $u_t = F$.

• An evolution equation $u_t = F(u, u_x, u_{xx}, \dots)$ is said to be integrable if it has a **Lax Pair** L and M that are linear differential operators in terms of ∂_x with coefficients in u, u_x, u_{xx}, \dots satisfying

$$L_t = [M, L]$$

identically in all $u, u_x, u_{xx}, ...$ iff $u_t = F$.

• Lax pair is used in the inverse scattering transform to generate multi-soliton solutions which have many physical applications.

• An evolution equation $u_t = F(u, u_x, u_{xx}, ...)$ is said to be integrable if it has a **Lax Pair** L and M that are linear differential operators in terms of ∂_x with coefficients in $u, u_x, u_{xx}, ...$ satisfying

$$L_t = [M, L]$$

identically in all $u, u_x, u_{xx}, ...$ iff $u_t = F$.

- Lax pair is used in the inverse scattering transform to generate multi-soliton solutions which have many physical applications.
- Two well known examples:

$$\begin{array}{ll} u_t = uu_x + u_{xxx} & \text{Korteweg-De Vries (KdV) equation} \\ L = \partial_x^2 + \frac{1}{6}u, & M = 4\partial_x^3 + u\partial_x + \frac{1}{2}u_x & (w(L) = 2) \\ u_t = u^2u_x + u_{xxx} & \text{modified Korteweg-De Vries (mKdV) equation} \\ L = \partial_x + u, & M = -u_{xx} - \frac{1}{3}u^3 & (w(L) = 1) \\ L = \partial_x^2 + 2u\partial_x + u^2 + u_x, & M = -u_{xx} - \frac{1}{2}u^3 & (w(L) = 2) \end{array}$$

• An evolution equation $u_t = F(u, u_x, u_{xx}, ...)$ is said to be integrable if it has a **Lax Pair** L and M that are linear differential operators in terms of ∂_x with coefficients in $u, u_x, u_{xx}, ...$ satisfying

$$L_t = [M, L]$$

identically in all $u, u_x, u_{xx}, ...$ iff $u_t = F$.

- Lax pair is used in the inverse scattering transform to generate multi-soliton solutions which have many physical applications.
- Two well known examples:

$$u_t = uu_x + u_{xxx}$$
 Korteweg-De Vries (KdV) equation $L = \partial_x^2 + \frac{1}{6}u$, $M = 4\partial_x^3 + u\partial_x + \frac{1}{2}u_x$ ($w(L) = 2$) $u_t = u^2u_x + u_{xxx}$ modified Korteweg-De Vries (mKdV) equation $L = \partial_x + u$, $M = -u_{xx} - \frac{1}{3}u^3$ ($w(L) = 1$) $L = \partial_x^2 + 2u\partial_x + u^2 + u_x$, $M = -u_{xx} - \frac{1}{2}u^3$ ($w(L) = 2$)

About Octonions I

• Cayley-Dickson construction: real, complex, quaternions, octonions, sedenions,... by introducing 1 new imaginary number each time

About Octonions I

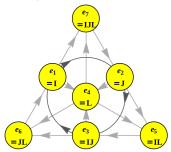
- Cayley-Dickson construction: real, complex, quaternions, octonions, sedenions,... by introducing 1 new imaginary number each time
- 8-dimensional algebra formed by 1 real and 7 imaginary basis elements

About Octonions I

- Cayley-Dickson construction: real, complex, quaternions, octonions, sedenions,... by introducing 1 new imaginary number each time
- 8-dimensional algebra formed by 1 real and 7 imaginary basis elements
- normed division algebra over the real numbers

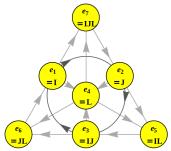
About Octonions II

• noncommutative, nonassociative



About Octonions II

• noncommutative, nonassociative

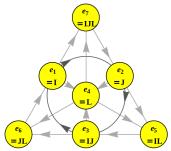


• but

$$alternative: \ x(xy)=(xx)y, \ \ (yx)x=y(xx),$$

About Octonions II

• noncommutative, nonassociative



• but

alternative:
$$x(xy) = (xx)y$$
, $(yx)x = y(xx)$, as a consequence the associator $[x, y, z] := (xy)z - x(yz)$ satisfies $[x, x, y] = [y, x, x] = 0$ and as a consequence of that also $[x, y, x] = 0$.

Applications of Octonions

• appear in attempts to understand and extend the Standard Model of elementary particle physics and string theory C. Furey, Phys. Rev. D 86, 025024 (2012); T.P.Singh, Z.Naturforsch. A 75, 1051 (2020)

Applications of Octonions

- appear in attempts to understand and extend the Standard Model of elementary particle physics and string theory C. Furey, Phys. Rev. D 86, 025024 (2012); T.P.Singh, Z.Naturforsch. A 75, 1051 (2020)
- other applications in quantum logic, special relativity and supersymmetry John C. Baez https://arxiv.org/abs/math/0105155 (2002)

Applications of Octonions

- appear in attempts to understand and extend the Standard Model of elementary particle physics and string theory C. Furey, Phys. Rev. D 86, 025024 (2012); T.P.Singh, Z.Naturforsch. A 75, 1051 (2020)
- other applications in quantum logic, special relativity and supersymmetry John C. Baez https://arxiv.org/abs/math/0105155 (2002)
- little literature exists on specific integrable evolution equations over octonions A. Restuccia, A. Sotomayor, J.P. Veiro, arXiv:1609.05410v1 [math-ph] (2016)

• Integrable scalar evolution equations have been extended to multi-component (coupled) evolution equations (e.g. over vectors, matrices, Lie algebras, graded algebras).

- Integrable scalar evolution equations have been extended to multi-component (coupled) evolution equations (e.g. over vectors, matrices, Lie algebras, graded algebras).
- This project: Integrable evolution equations over the octonions

- Integrable scalar evolution equations have been extended to multi-component (coupled) evolution equations (e.g. over vectors, matrices, Lie algebras, graded algebras).
- This project: Integrable evolution equations over the octonions
- Start with KdV and mKdV type that have a Lax pair

- Integrable scalar evolution equations have been extended to multi-component (coupled) evolution equations (e.g. over vectors, matrices, Lie algebras, graded algebras).
- This project: Integrable evolution equations over the octonions
- Start with KdV and mKdV type that have a Lax pair
- Later goal: Classification

Outline

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- Conclusions
- Results since May 2024
- 12 References

• Select weights for ∂_t , ∂_x , u, L, e.g. KdV-scaling: $w(\partial_t) = 3$, $w(\partial_x) = 1$, w(u) = 2, and start with w(L) = 2 $\rightarrow w(M) = w(L_t) - w(L) = w(\partial_t) = 3$ $\rightarrow w(F) = w(u) + w(\partial_t) = 5$

- Select weights for $\partial_t, \partial_x, u, L$, e.g. KdV-scaling: $w(\partial_t) = 3$, $w(\partial_x) = 1$, w(u) = 2, and start with w(L) = 2 $\rightarrow w(M) = w(L_t) - w(L) = w(\partial_t) = 3$ $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
- Make general homogenous polynomial ansatz for $F(=u_t), L, M$ with undetermined constant coefficients f_j, l_j, m_j and octonion variables $u, u_x, u_{xx}, ...$

- Select weights for ∂_t , ∂_x , u, L, e.g. KdV-scaling: $w(\partial_t) = 3$, $w(\partial_x) = 1$, w(u) = 2, and start with w(L) = 2 $\rightarrow w(M) = w(L_t) - w(L) = w(\partial_t) = 3$ $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
- Make general homogenous polynomial ansatz for $F(=u_t), L, M$ with undetermined constant coefficients f_j, l_j, m_j and octonion variables $u, u_x, u_{xx}, ...$
- Formulate $L_t = [M, L]$

- Select weights for $\partial_t, \partial_x, u, L$, e.g. KdV-scaling: $w(\partial_t) = 3$, $w(\partial_x) = 1$, w(u) = 2, and start with w(L) = 2 $\rightarrow w(M) = w(L_t) - w(L) = w(\partial_t) = 3$ $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
- Make general homogenous polynomial ansatz for $F(=u_t), L, M$ with undetermined constant coefficients f_j, l_j, m_j and octonion variables $u, u_x, u_{xx}, ...$
- Formulate $L_t = [M, L]$
- Split wrt. u, u_x, u_{xx}, \dots

- Select weights for $\partial_t, \partial_x, u, L$, e.g. KdV-scaling: $w(\partial_t) = 3$, $w(\partial_x) = 1$, w(u) = 2, and start with w(L) = 2 $\rightarrow w(M) = w(L_t) - w(L) = w(\partial_t) = 3$ $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
- Make general homogenous polynomial ansatz for $F(=u_t), L, M$ with undetermined constant coefficients f_j, l_j, m_j and octonion variables $u, u_x, u_{xx}, ...$
- Formulate $L_t = [M, L]$
- Split wrt. u, u_x, u_{xx}, \dots
- Solve the overdetermined non-linear polynomial system for unknown coefficients f_j, l_j, m_j to obtain the integrable equation $u_t = F$ and Lax pair L, M.

Instead of linear differential operators L, M

• Introduce zero weight G(x)

- Introduce zero weight G(x)
- Make polynomial ansatz for LG, MG, linear homogeneous in $G, G_x,$

- Introduce zero weight G(x)
- Make polynomial ansatz for LG, MG, linear homogeneous in $G, G_x,$
- Instead of $L_tG = [M, L]G$ formulate $(LG)_t = M(LG) L(MG)$.

- Introduce zero weight G(x)
- Make polynomial ansatz for LG, MG, linear homogeneous in $G, G_x,$
- Instead of $L_tG = [M, L]G$ formulate $(LG)_t = M(LG) L(MG)$.
- To compute $(LG)_t$ replace $u_t = F$, $u_{tx} = dF/dx$,

- Introduce zero weight G(x)
- Make polynomial ansatz for LG, MG, linear homogeneous in $G, G_x,$
- Instead of $L_tG = [M, L]G$ formulate $(LG)_t = M(LG) L(MG)$.
- To compute $(LG)_t$ replace $u_t = F$, $u_{tx} = dF/dx$,
- To compute M(LG) replace in MG each $G, G_x, ...$ 'in place' by $LG, (LG)_x, ...$
- To compute L(MG) replace in LG each $G, G_x, ...$ 'in place' by $MG, (MG)_x, ...$

KdV-scaling:
$$w(\partial_t) = 3$$
, $w(\partial_x) = 1$, $w(u) = 2$, try $w(LG) = w(L) = 2$
 $\to w(F) = w(u) + w(\partial_t) = 5$
 $\to w(MG) = w(M) = w(\partial_t) = 3$
 $F = f_1 u_{xxx} + f_2 u u_x + f_3 u_x u$
 $LG = l_1 G_{xx} + l_2 G u + l_3 u G$
 $MG = m_1 G_{xxx} + m_2 G_x u + m_3 u G_x + m_4 G u_x + m_5 u_x G$

KdV-scaling:
$$w(\partial_t) = 3$$
, $w(\partial_x) = 1$, $w(u) = 2$, try $w(LG) = w(L) = 2$
 $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
 $\rightarrow w(MG) = w(M) = w(\partial_t) = 3$
 $F = f_1 u_{xxx} + f_2 u u_x + f_3 u_x u$
 $LG = l_1 G_{xx} + l_2 G u + l_3 u G$
 $MG = m_1 G_{xxx} + m_2 G_x u + m_3 u G_x + m_4 G u_x + m_5 u_x G$
 $(LG)_t = l_2 G F + l_3 F G$

$$\begin{split} \text{KdV-scaling: } & w(\partial_t) = 3, \, w(\partial_x) = 1, \, w(u) = 2, \, \text{try } w(LG) = w(L) = 2 \\ & \to w(F) = w(u) + w(\partial_t) = 5 \\ & \to w(MG) = w(M) = w(\partial_t) = 3 \end{split}$$

$$F = f_1 u_{xxx} + f_2 u u_x + f_3 u_x u$$

$$LG = l_1 G_{xx} + l_2 G u + l_3 u G$$

$$MG = m_1 G_{xxx} + m_2 G_x u + m_3 u G_x + m_4 G u_x + m_5 u_x G$$

$$(LG)_t = l_2 G F + l_3 F G$$

$$L(MG) = l_1 (MG)_{xx} + l_2 (MG) u + l_3 u (MG)$$

KdV-scaling:
$$w(\partial_t) = 3$$
, $w(\partial_x) = 1$, $w(u) = 2$, try $w(LG) = w(L) = 2$
 $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
 $\rightarrow w(MG) = w(M) = w(\partial_t) = 3$

$$F = f_1 u_{xxx} + f_2 u u_x + f_3 u_x u$$

$$LG = l_1 G_{xx} + l_2 G u + l_3 u G$$

$$MG = m_1 G_{xxx} + m_2 G_x u + m_3 u G_x + m_4 G u_x + m_5 u_x G$$

$$(LG)_t = l_2 G F + l_3 F G$$

$$L(MG) = l_1 (MG)_{xx} + l_2 (MG) u + l_3 u (MG)$$

$$M(LG) = m_1 (LG)_{xxx} + m_2 (LG)_x u + m_3 u (LG)_x + m_4 (LG) u_x + m_5 u_x (LG)$$

KdV-scaling:
$$w(\partial_t) = 3$$
, $w(\partial_x) = 1$, $w(u) = 2$, try $w(LG) = w(L) = 2$
 $\rightarrow w(F) = w(u) + w(\partial_t) = 5$
 $\rightarrow w(MG) = w(M) = w(\partial_t) = 3$
 $F = f_1 u_{xxx} + f_2 u u_x + f_3 u_x u$
 $LG = l_1 G_{xx} + l_2 G u + l_3 u G$
 $MG = m_1 G_{xxx} + m_2 G_x u + m_3 u G_x + m_4 G u_x + m_5 u_x G$
 $(LG)_t = l_2 G F + l_3 F G$
 $L(MG) = l_1 (MG)_{xx} + l_2 (MG) u + l_3 u (MG)$
 $M(LG) = m_1 (LG)_{xxx} + m_2 (LG)_x u + m_3 u (LG)_x + m_4 (LG) u_x + m_5 u_x (LG)$

Problem: For high $w(\partial_t), w(L)$ and low $w(\partial_x), w(u)$ the number of terms goes into the 100s..1000s

Adapting to Identities for Octonions

Spliting wrt. $u, u_x, u_{xx}, ...$ is too restrictive because of **polynomial identities** of octonions, like 0 = (wu)v - w(uv) + (vu)w - v(uw)

Spliting wrt. $u, u_x, u_{xx}, ...$ is too restrictive because of **polynomial identities** of octonions, like 0 = (wu)v - w(uv) + (vu)w - v(uw)

Instead

• Replace $u, u_x, ...$ by their component form $u = \sum_{i=0}^{7} u_i(x, t)e_i, ...$

Spliting wrt. $u, u_x, u_{xx}, ...$ is too restrictive because of **polynomial identities** of octonions, like 0 = (wu)v - w(uv) + (vu)w - v(uw)

Instead

- Replace $u, u_x, ...$ by their component form $u = \sum_{i=0}^{7} u_i(x, t)e_i, ...$
- Split wrt. e_i, u_i, u_{xi}, \dots

Spliting wrt. $u, u_x, u_{xx}, ...$ is too restrictive because of **polynomial identities** of octonions, like 0 = (wu)v - w(uv) + (vu)w - v(uw)

Instead

- Replace $u, u_x, ...$ by their component form $u = \sum_{i=0}^{7} u_i(x, t)e_i, ...$
- Split wrt. e_i, u_i, u_{xi}, \dots

Consequences:

- Huge computational cost,
- A new necessary research project: Find and use all octonion identities, not only the known fully antisymmetric ones and also those with repeating factors in a term

Spliting wrt. $u, u_x, u_{xx}, ...$ is too restrictive because of **polynomial identities** of octonions, like 0 = (wu)v - w(uv) + (vu)w - v(uw)

Instead

- Replace $u, u_x, ...$ by their component form $u = \sum_{i=0}^{7} u_i(x, t)e_i, ...$
- Split wrt. e_i, u_i, u_{xi}, \dots

Consequences:

- Huge computational cost,
- A new necessary research project: Find and use all octonion identities, not only the known fully antisymmetric ones and also those with repeating factors in a term

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- Conclusions
- Results since May 2024
- 12 References

- Introduction
- 2 Outline of Method
- Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- 10 Conclusions
- Results since May 2024
- 12 References

• Is a given octonion polynomial identically zero?

- Is a given octonion polynomial identically zero?
- How to simplify an octonion polynomial?

- Is a given octonion polynomial identically zero?
- How to simplify an octonion polynomial?
- How to decide ideal membership?

- Is a given octonion polynomial identically zero?
- How to simplify an octonion polynomial?
- How to decide ideal membership?
- Find all identically vanishing polynomials up to some degree.

- Is a given octonion polynomial identically zero?
- How to simplify an octonion polynomial?
- How to decide ideal membership?
- Find all identically vanishing polynomials up to some degree.
- Find all central (real) polynomials up to some degree.

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- 10 Conclusions
- Results since May 2024
- 12 References

Outline

• Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$
- Split P = 0 w.r.t. $e_i, u_i, ...$

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$
- Split P = 0 w.r.t. $e_i, u_i, ...$
- Solve the linear system for the undetermined coefficients c_k

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$
- Split P = 0 w.r.t. $e_i, u_i, ...$
- Solve the linear system for the undetermined coefficients c_k
- Substitute general solution into P

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$
- Split P = 0 w.r.t. $e_i, u_i, ...$
- Solve the linear system for the undetermined coefficients c_k
- ullet Substitute general solution into P
- ullet Get all IDs (identities) as coefficients of free parameters in P

- Formulate a general polynomial P of degree d in n octonion variables u, ... with undetermined coefficients c_k
- Replace variables by their component form, e.g. $u = \sum_{i=0}^{7} u_i e_i$
- Split P = 0 w.r.t. $e_i, u_i, ...$
- Solve the linear system for the undetermined coefficients c_k
- Substitute general solution into P
- ullet Get all IDs (identities) as coefficients of free parameters in P
- Find linear combinations of identities and permutations of them that are short, highly symmetric to allow a compact formulation.

```
n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ...)
d = \text{degree of polynomial } P(u, v, ...) \text{ (in the application } P = L, M)
```

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},..) d= degree of polynomial P(u,v,..) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,...) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1, \ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:d!\times m(d) (multilinearity)
```

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,...) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:d!\times m(d) (multilinearity) \tau=\# of terms of P in expanded form =t\times 8^d
```

c = # of real/imag. components of all octonion variables = 8n

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,...) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1, \ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:d!\times m(d) (multilinearity) \tau=\# of terms of P in expanded form =t\times 8^d
```

i = # of identities = # of free coeff. in general solution of P = 0

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,..) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:d!\times m(d) (multilinearity) \tau=\# of terms of P in expanded form =t\times 8^d c=\# of real/imag. components of all octonion variables =8n
```

```
n= number of octonion variables u,v,w. (in application u,u_x,u_{2x},..) d= degree of polynomial P(u,v,..) (in the application P=L,M) m= \# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

t = # of terms of $P : d! \times m(d)$ (multilinearity)

 $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $c\,=\,\#$ of real/imag. components of all octonion variables $=\,8n$

i = # of identities = # of free coeff. in general solution of P = 0

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429

```
n = \text{number of octonion variables } u, v, w. (in application u, u_x, u_{2x}, ...) d = \text{degree of polynomial } P(u, v, ...) (in the application P = L, M) m = \# of different ways to non-associative multiply the d factors of 1 term, m(1) = 1, m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

t = # of terms of $P : d! \times m(d)$ (multilinearity)

 $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $c\,=\,\#$ of real/imag. components of all octonion variables = 8n

i = # of identities = # of free coeff. in general solution of P = 0

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429
t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^{7}

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,...) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1, \ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

t = # of terms of $P : d! \times m(d)$ (multilinearity)

 $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $c\,=\,\#$ of real/imag. components of all octonion variables $=\,8n$

i = # of identities = # of free coeff. in general solution of P = 0

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429
t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^{7}
τ	8	128	6140	491520	55×10^{6}	7.9×10^{9}	1.39×10^{12}	2.84×10^{14}

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,..) (in the application P=L,M) m= \# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

t = # of terms of $P : d! \times m(d)$ (multilinearity)

 $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $c\,=\,\#$ of real/imag. components of all octonion variables = 8n

i = # of identities = # of free coeff. in general solution of P = 0

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429
t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^{7}
τ	8	128	6140	491520	55×10^{6}	7.9×10^{9}	1.39×10^{12}	2.84×10^{14}
c	8	16	24	32	40	48	56	64

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,...) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

t = # of terms of $P : d! \times m(d)$ (multilinearity)

 $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $c\,=\,\#$ of real/imag. components of all octonion variables $=\,8n$

i = # of identities = # of free coeff. in general solution of P = 0

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429
t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^{7}
τ	8	128	6140	491520	55×10^{6}	7.9×10^{9}	1.39×10^{12}	2.84×10^{14}
c	8	16	24	32	40	48	56	64
i	0	0						

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,...) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

t = # of terms of $P : d! \times m(d)$ (multilinearity)

 $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $c\,=\,\#$ of real/imag. components of all octonion variables $=\,8n$

i = # of identities = # of free coeff. in general solution of P = 0

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429
t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^{7}
τ	8	128	6140	491520	55×10^{6}	7.9×10^{9}	1.39×10^{12}	2.84×10^{14}
c	8	16	24	32	40	48	56	64
i	0	0	5					

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,...) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

t = # of terms of $P : d! \times m(d)$ (multilinearity)

 $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $c\,=\,\#$ of real/imag. components of all octonion variables $=\,8n$

i = # of identities = # of free coeff. in general solution of P = 0

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429
t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^{7}
au	8	128	6140	491520	55×10^{6}	7.9×10^{9}	1.39×10^{12}	2.84×10^{14}
c	8	16	24	32	40	48	56	64
i	0	0	5	88				

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,...) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

t = # of terms of $P : d! \times m(d)$ (multilinearity)

 $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $c\,=\,\#$ of real/imag. components of all octonion variables $=\,8n$

i = # of identities = # of free coeff. in general solution of P = 0

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429
t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^{7}
τ	8	128	6140	491520	55×10^{6}	7.9×10^{9}	1.39×10^{12}	2.84×10^{14}
c	8	16	24	32	40	48	56	64
i	0	0	5	88	1530			

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,..) (in the application P=L,M) m= \# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

t = # of terms of $P : d! \times m(d)$ (multilinearity)

 $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

 $c\,=\,\#$ of real/imag. components of all octonion variables $=\,8n$

i = # of identities = # of free coeff. in general solution of P = 0

d = n	1	2	3	4	5	6	7	8
m	1	1	2	5	14	42	132	429
t	1	2	12	120	1680	30240	6.65×10^{5}	1.69×10^{7}
τ	8	128	6140	491520	55×10^{6}	7.9×10^{9}	1.39×10^{12}	2.84×10^{14}
c	8	16	24	32	40	48	56	64
i	0	0	5	88	1530	?	?	?
e	1	2	7	32	150	?	?	?

The Computational Complexity of Repeating Factors

```
n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ...)
d = \text{degree of polynomial } P(u, v, ...) \text{ (in the application } P = L, M)
```

The Computational Complexity of Repeating Factors

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},..) d= degree of polynomial P(u,v,..) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1, m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications)
```

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},..) d= degree of polynomial P(u,v,..) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:n^d\times m(d) (factors may repeat)
```

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,...) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:n^d\times m(d) (factors may repeat) \tau=\# of terms of P in expanded form t=10.
```

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,..) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:n^d\times m(d) (factors may repeat) \tau=\# of terms of P in expanded form =t\times 8^d
```

c = # of real/imag. components of all octonion variables = 8n

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,...) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:n^d\times m(d) (factors may repeat) \tau=\# of terms of P in expanded form =t\times 8^d c=\# of real/imag, components of all octonion variables =8n
```

i = # of identities = # of free coeff. in general solution of P = 0

```
n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ...)
d = \text{degree of polynomial } P(u, v, ...) (in the application P = L, M)
m = \# of different ways to non-associative multiply the d factors of 1 term,
     m(1) = 1, m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) (recursive formula summing
     over all d-1 options for the last of the d-1 multiplications)
```

t = # of terms of $P: n^d \times m(d)$ (factors may repeat)

 $\tau = \#$ of terms of P in expanded form $= t \times 8^d$

c = # of real/imag. components of all octonion variables = 8n

i = # of identities = # of free coeff. in general solution of P = 0

w 1	-	3	4	9	6
m 1	1	2	5	14	42

```
n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ...)
d = \text{degree of polynomial } P(u, v, ...) (in the application P = L, M)
m = \# of different ways to non-associative multiply the d factors of 1 term,
     m(1) = 1, m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) (recursive formula summing
     over all d-1 options for the last of the d-1 multiplications)
```

$$t = \#$$
 of terms of $P : n^d \times m(d)$ (factors may repeat)

$$\tau = \#$$
 of terms of P in expanded form $= t \times 8^d$

$$c\,=\,\#$$
 of real/imag. components of all octonion variables $=\,8n$

$$i = \#$$
 of identities = $\#$ of free coeff. in general solution of $P = 0$

$$e = \#$$
 of essential terms in P which is $t - z$

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^{6}

```
n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ...)
d = \text{degree of polynomial } P(u, v, ...) (in the application P = L, M)
m = \# of different ways to non-associative multiply the d factors of 1 term,
     m(1) = 1, m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) (recursive formula summing
     over all d-1 options for the last of the d-1 multiplications)
t = \# of terms of P: n^d \times m(d) (factors may repeat)
\tau = \# of terms of P in expanded form = t \times 8^d
```

$$t = \#$$
 of terms of $P: n^a \times m(d)$ (factors may repeat)

$$\tau = \#$$
 of terms of P in expanded form $= t \times 8^a$

$$c\,=\,\#$$
 of real/imag. components of all octonion variables $=\,8n$

$$i = \#$$
 of identities = $\#$ of free coeff. in general solution of $P = 0$

$$e = \#$$
 of essential terms in P which is $t - z$

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^{6}
τ	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,..) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:n^d\times m(d) (factors may repeat) \tau=\# of terms of P in expanded form =t\times 8^d
```

c=# of real/imag. components of all octonion variables =8n i=# of identities =# of free coeff. in general solution of P=0

d=n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^{6}
τ	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
c	8	16	24	32	40	48

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,..) (in the application P=L,M) m= \# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i)\quad (\text{recursive formula summing over all }d-1\text{ options for the last of the }d-1\text{ multiplications}) t= \# of terms of P:n^d\times m(d) (factors may repeat) \tau= \# of terms of P in expanded form =t\times 8^d
```

c=# of real/imag. components of all octonion variables =8ni=# of identities =# of free coeff. in general solution of P=0

ſ	d = n	1	2	3	4	5	6
ſ	m	1	1	2	5	14	42
Γ	t	1	4	54	1280	43750	1.95×10^{6}
ſ	τ	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
ſ	c	8	16	24	32	40	48
ſ	i	0	0				

```
n = \text{number of octonion variables } u, v, w.. \text{ (in application } u, u_x, u_{2x}, ...)
d = \text{degree of polynomial } P(u, v, ...) (in the application P = L, M)
m = \# of different ways to non-associative multiply the d factors of 1 term,
     m(1) = 1, m(d) = \sum_{i=1}^{d-1} m(i) \times m(d-i) (recursive formula summing
     over all d-1 options for the last of the d-1 multiplications)
t = \# of terms of P: n^d \times m(d) (factors may repeat)
\tau = \# of terms of P in expanded form = t \times 8^d
c = \# of real/imag. components of all octonion variables = 8n
```

i = # of identities = # of free coeff. in general solution of P = 0

	d = n	1	2	3	4	5	6
ſ	m	1	1	2	5	14	42
ſ	t	1	4	54	1280	43750	1.95×10^{6}
ĺ	au	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
ſ	c	8	16	24	32	40	48
ĺ	i	0	0	26			

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,..) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:n^d\times m(d) (factors may repeat) \tau=\# of terms of P in expanded form =t\times 8^d c=\# of real/imag, components of all octonion variables =8n
```

c = # of real/imag. components of all octonion variables = 8n i = # of identities = # of free coeff. in general solution of P = 0e = # of essential terms in P which is t - z

	d = n	1	2	3	4	5	6
ſ	m	1	1	2	5	14	42
ſ	t	1	4	54	1280	43750	1.95×10^{6}
ſ	au	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
Ī	c	8	16	24	32	40	48
Ī	i	0	0	26	992		

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,..) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:n^d\times m(d) (factors may repeat) \tau=\# of terms of P in expanded form =t\times 8^d
```

c=# of real/imag. components of all octonion variables =8n i=# of identities =# of free coeff. in general solution of P=0

(d = n	1	2	3	4	5	6
7	m	1	1	2	5	14	42
- t	t	1	4	54	1280	43750	1.95×10^{6}
7	au	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
(c	8	16	24	32	40	48
i	i	0	0	26	992	40375	

```
n= number of octonion variables u,v,w.. (in application u,u_x,u_{2x},...) d= degree of polynomial P(u,v,..) (in the application P=L,M) m=\# of different ways to non-associative multiply the d factors of 1 term, m(1)=1,\ m(d)=\sum_{i=1}^{d-1}m(i)\times m(d-i) (recursive formula summing over all d-1 options for the last of the d-1 multiplications) t=\# of terms of P:n^d\times m(d) (factors may repeat) \tau=\# of terms of P in expanded form =t\times 8^d c=\# of real/imag, components of all octonion variables =8n
```

i = # of identities = # of free coeff. in general solution of P = 0

d = n	1	2	3	4	5	6
m	1	1	2	5	14	42
t	1	4	54	1280	43750	1.95×10^{6}
τ	8	256	9213	5.24×10^{6}	1.4336×10^9	5.13×10^{11}
c	8	16	24	32	40	48
i	0	0	26	992	40375	?
e	1	4	28	288	3375	?

Central Polynomials

A polynomial P = P(x, y, ...) is a *central* polynomial if P is real for any octonion variables x, y, ... and thus commutes with any other octonian variable u:

$$[P,u]=0$$

and thus also satisfies the vanishing identity

$$[P, u, v] = (Pv)w - P(vw) = P(vw) - P(vw) = 0$$

for any octonions u, v.

Central Polynomials

A polynomial P = P(x, y, ...) is a *central* polynomial if P is real for any octonion variables x, y, ... and thus commutes with any other octonian variable u:

$$[P,u]=0$$

and thus also satisfies the vanishing identity

$$[P, u, v] = (Pv)w - P(vw) = P(vw) - P(vw) = 0$$

for any octonions u, v.

Same procedure to compute them, only ignore coefficient of e_0 after splitting w.r.t. e_i .

Outline

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- 10 Conclusions
- Results since May 2024
- 12 References

Known Minimal Degree Central Polynomials

```
Racine (1986) [3], Hentzel, Peresi (1996) [4], Shestakov, Zhukavet (2009) [5]: degree 1,2,3: None degree 4: [a,b] \circ [c,d], (1)
```

where $x \circ y := xy + yx$,

Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4], Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4:
$$[a,b] \circ [c,d], \tag{1}$$

where $x \circ y := xy + yx$,

degree 5:
$$\sum_{\text{alt}} \{24a(b(c(de))) + 8a([b, c, d]e) - 11[a, b, [c, d, e]]\}, \quad (2)$$

where \sum is the alternating sum over the arguments.

Known Minimal Degree Central Polynomials

Racine (1986) [3], Hentzel, Peresi (1996) [4], Shestakov, Zhukavet (2009) [5]:

degree 1,2,3: None

degree 4:
$$[a,b] \circ [c,d], \tag{1}$$

where $x \circ y := xy + yx$,

degree 5:
$$\sum_{\text{alt}} \{24a(b(c(de))) + 8a([b, c, d]e) - 11[a, b, [c, d, e]]\}, \quad (2)$$

where \sum is the alternating sum over the arguments.

degree 6: No new ones.

Known Minimal Degree Identities

```
degree 1, 2: None
```

degree 3: Just the alternative laws

degree 4: No new ones

degree 5:

$$[[a,b]\circ[c,d],e]=0,$$

(3)

Known Minimal Degree Identities

degree 1, 2: None

degree 3: Just the alternative laws

degree 4: No new ones

degree 5:

$$[[a,b] \circ [c,d], e] = 0,$$
 (3)

$$\overline{P}_3(x^2) - \overline{P}_3(x) \circ x = 0, \tag{4}$$

where $V_x(y) := x \circ y$ and \overline{P}_3 is defined by

$$\overline{P}_3 = V_a V_b V_c + V_c V_a V_b + V_b V_c V_a - V_b V_a V_c - V_a V_c V_b - V_c V_b V_a$$

Known Minimal Degree Identities

degree 1, 2: None

degree 3: Just the alternative laws

degree 4: No new ones

degree 5:

$$[[a,b] \circ [c,d], e] = 0,$$
 (3)

$$\overline{P}_3(x^2) - \overline{P}_3(x) \circ x = 0, \tag{4}$$

where $V_x(y) := x \circ y$ and \overline{P}_3 is defined by

$$\overline{P}_3 = V_a V_b V_c + V_c V_a V_b + V_b V_c V_a - V_b V_a V_c - V_a V_c V_b - V_c V_b V_a$$

degree 6:

$$\left[\sum_{\text{alt}} \{ 24a(b(c(de))) + 8a([b, c, d]e) - 11[a, b, [c, d, e]] \}, f \right] = 0, \quad (5)$$

Outline

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- 10 Conclusions
- Results since May 2024
- References

Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u, v] = 0, [v, u, u] = 0 give

$$[u,v,w] = [u,v,w] - [u+w,v,u+w] = \ldots = -[w,v,u]$$

and further total antisymmetry:

$$[u,v,w] = [v,w,u] = [w,u,v] = -[v,u,w] = -[u,w,v] = -[w,v,u]$$

Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u, v] = 0, [v, u, u] = 0 give

$$[u,v,w] = [u,v,w] - [u+w,v,u+w] = \ldots = -[w,v,u]$$

and further total antisymmetry:

$$[u,v,w] = [v,w,u] = [w,u,v] = -[v,u,w] = -[u,w,v] = -[w,v,u]$$

This is an example for equivalence of a (not fully skey symmetric 3-variable ID to a 2-variable IDs.

Degree 3 Vanishing Identities with Repeating Factors

Alternative laws [u, u, v] = 0, [v, u, u] = 0 give

$$[u,v,w] = [u,v,w] - [u+w,v,u+w] = \ldots = -[w,v,u]$$

and further total antisymmetry:

$$[u,v,w] = [v,w,u] = [w,u,v] = -[v,u,w] = -[u,w,v] = -[w,v,u]$$

This is an example for equivalence of a (not fully skey symmetric 3-variable ID to a 2-variable IDs.

Such IDs of degree > 3 are not systematically investigated sofar but needed for reducing polynomials.

Reductions require all identities, not only alternative laws. n=d=3 with repeating factors

Reductions	t	i	e
none	54	26	28
alternative laws	33	5	28
(wu)v =, w > v, [w, u, v] = -[v, u, w]	30	2	28
$(wu)v =, u \ge v, [w, u, v] = +[u, v, w]$	29	1	28
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	28	0	28

Reductions require all identities, not only alternative laws. n=d=3 with repeating factors

Reductions	t	i	e
none	54	26	28
alternative laws	33	5	28
(wu)v =, w > v, [w, u, v] = -[v, u, w]	30	2	28
$(wu)v =, u \ge v, [w, u, v] = +[u, v, w]$	29	1	28
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	28	0	28

The 26 identities included permutations of non-(skew)symmetric identities.

Reductions require all identities, not only alternative laws. n=d=3 with $repeating\ factors$

Reductions	t	i	e
none	54	26	28
alternative laws	33	5	28
(wu)v =, w > v, [w, u, v] = -[v, u, w]	30	2	28
$(wu)v =, u \ge v, [w, u, v] = +[u, v, w]$	29	1	28
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	28	0	28

The 26 identities included permutations of non-(skew)symmetric identities.

e=28=const. \rightarrow All terms dropped from P were redundant.

Reductions require all identities, not only alternative laws. n=d=3 with $repeating\ factors$

Reductions	t	i	e
none	54	26	28
alternative laws	33	5	28
(wu)v =, w > v, [w, u, v] = -[v, u, w]	30	2	28
$(wu)v =, u \ge v, [w, u, v] = +[u, v, w]$	29	1	28
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	28	0	28

The 26 identities included permutations of non-(skew)symmetric identities.

e=28=const. \rightarrow All terms dropped from P were redundant.

Finally $i = 0 \rightarrow \text{All redundant terms from } P \text{ were dropped.}$

Reductions require all identities, not only alternative laws. n=d=3 with repeating factors

Reductions	t	i	e
none	54	26	28
alternative laws	33	5	28
(wu)v =, w > v, [w, u, v] = -[v, u, w]	30	2	28
$(wu)v =, u \ge v, [w, u, v] = +[u, v, w]$	29	1	28
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	28	0	28

The 26 identities included permutations of non-(skew)symmetric identities.

e=28=const. \rightarrow All terms dropped from P were redundant.

Finally $i = 0 \rightarrow \text{All}$ redundant terms from P were dropped.

List of used identities is necessary and sufficient for this purpose.

Identities satisfied by Moufang loops (Ruth Moufang 1935) [1]

$$z(x(zy)) = ((zx)z)y$$

$$x(z(yz)) = ((xz)y)z$$

$$(zx)(yz) = (z(xy))z$$

$$(zx)(yz) = z((xy)z)$$

Identities satisfied by Moufang loops (Ruth Moufang 1935) [1]

$$z(x(zy)) = ((zx)z)y$$

$$x(z(yz)) = ((xz)y)z$$

$$(zx)(yz) = (z(xy))z$$

$$(zx)(yz) = z((xy)z)$$

Equivalent formulations in terms of associators:

$$w[u, v, w] = [u, vu, w] = [u, v, wu]$$

 $[u, v, w]u = [u, uv, w] = [u, v, uw]$

Reverse Polynomials

Lemma: If P is a polynomial of octonion variables vanishing identically P = 0 then the reverse polynomial R(P) vanishes too, R(P) = 0.

Example:

$$\begin{array}{rcl} 0 & = & (v[z,u,w] + [u,v,wz])_{\{v,z\}} \\ 0 & = & ([zw,v,u] + [w,u,z]v)_{\{v,z\}} \end{array}$$

Reverse Polynomials

Lemma: If P is a polynomial of octonion variables vanishing identically P = 0 then the reverse polynomial R(P) vanishes too, R(P) = 0.

Example:

$$0 = (v[z, u, w] + [u, v, wz])_{\{v,z\}}$$

$$0 = ([zw, v, u] + [w, u, z]v)_{\{v,z\}}$$

are equivalent to

$$0 = [u, v, wz]_{\{u, w\}\{v, z\}}$$

modulo anti-symmetry of associators despite being the result of another symmetrization.

An Identity for General Non-associative Algebras

Qualitatively different:

Associator identity not using alternating property, valid for any non-associative algebra

$$0 = u[v,w,z] - [uv,w,z] + [u,vw,z] - [u,v,wz] + [u,v,w]z$$

Not useful to remove terms but for manual proofs

An Identity for General Non-associative Algebras

Qualitatively different:

Associator identity not using alternating property, valid for any non-associative algebra

$$0 = u[v,w,z] - [uv,w,z] + [u,vw,z] - [u,v,wz] + [u,v,w]z$$

Not useful to remove terms but for manual proofs

Palindrome identity after $u \leftrightarrow z, y \leftrightarrow w$.

Degree 4 Minimal General Polynomials

Reductions require all identities, not only alternative laws.

Example: n = d = 4 multilinear case

Reductions	t	i	e
none	120	88	32
(wu)v =, w > v, [w, u, v] = -[v, u, w]	72	40	32
$[(wu)v =, u \ge v, [w, u, v] = +[u, v, w]$	56	24	32
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	40	8	32
$(uv)(wx) =, v \ge x, 0 = [u, v, wz]_{\{v, w\}\{u, z\}}$	32	0	32

Degree 4 Minimal General Polynomials

Reductions require all identities, not only alternative laws.

Example: n = d = 4 repeating factors

Reductions	t	i	e
none	1280	992	288
alternative laws	784	496	288
identity in 2 factor products	712	424	288
(wu)v =, w > v, [w, u, v] = -[v, u, w]	520	232	288
$(wu)v =, u \ge v, [w, u, v] = +[u, v, w]$	432	144	288
$[(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	344	56	288
$(uv)(wx) =, v \ge x, 0 = [u, v, wz]_{\{v, w\}\{u, z\}}$	288	0	288

Degree 5 Minimal General Polynomials I

Reductions require all identities, not only alternative laws.

Example: n = d = 5 multiliear polynomial

Reductions	t	i	e
none	1680	1530	150
(wu)v =, w > v, [w, u, v] = -[v, u, w]	790	640	150
$(wu)v =, u \ge v, [w, u, v] = +[u, v, w]$	525	375	150
$(wu)v =, w \ge u, [w, u, v] = +[v, w, u]$	330	180	150
$(uv)(wx) =, v \ge x, 0 = [u, v, wz]_{\{v, w\}\{u, z\}}$	226	76	150

Degree 5 Minimal General Polynomials II

n = d = 5 multiliear polynomial

Reductions	t	i	e
(pr)(u(qs)) =, p < q, r < s			
$0 = ([pr(u(qs))] - p(r[uqs]))_{\{pq\}\{rs\}}$	211	61	150
0 = [p, real of degree 4]	186	36	150
(rp)((qs)u) =, p < q, r < s			
$0 = (-(rp)[qsu] + p(r[qsu]) - (ps)[rqu] + s(p[rqu]))_{pq}$	170	20	150
(pr)(q(su)) =, p < q, q < r, r < s			
0 = (+[pr(q(su))] + [pr(u(sq))]			
$-[pr(s(qu))] + p(r[qus]))_{pq}_{rs}$	169	19	150
(pr)((sq)u) =, p < q, q < r			
0 = (-[pr((sq)u)] + [pr(q(su))] + p(u[rsq])			
$-u[(pq)rs] + u(p[qrs]))_{\{pq\}}$	167	17	150

Degree 5 Minimal General Polynomials III

n = d = 5 multiliear polynomial

Reductions	t	i	e
$(pr)((qs)u) = \dots, p < q < r < s < u$			
$0 = (-[pr(s(qu))] + [pr((qs)u)] + p(u[rsq]) - u[pr(qs)])_{\{pq\}}$	166	16	150
(qr)((ps)u), (qr)(u(ps)), (qr)(s(up)), based on 6 longer			
(qr)(s(pu)), (qs)(u(pr)), (qu)(r(sp)) identities	160	10	150
p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(qs))), p(u(q(sr)))			
p(u(r(sq))), p(s(u(qr))), q(r(p(su))), q(r(s(pu))), q(r(u(ps)))			
$0 = (q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr))))_{[uq]\{qrs\}}$	150	0	150

Degree 5 Minimal General Polynomials III

n = d = 5 multiliear polynomial

Reductions	t	i	e
$(pr)((qs)u) = \dots, p < q < r < s < u$			
$0 = (-[pr(s(qu))] + [pr((qs)u)] + p(u[rsq]) - u[pr(qs)])_{\{pq\}}$	166	16	150
(qr)((ps)u), (qr)(u(ps)), (qr)(s(up)), based on 6 longer			
(qr)(s(pu)), (qs)(u(pr)), (qu)(r(sp)) identities	160	10	150
p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(qs))), p(u(q(sr)))			
p(u(r(sq))), p(s(u(qr))), q(r(p(su))), q(r(s(pu))), q(r(u(ps)))			
$0 = (q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr))))_{[uq]\{qrs\}}$	150	0	150

• Last reduction uses 10 identities each with 36 terms *(*(*(**))):

$$\begin{split} 0 &= \left(q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr)))\right)_{[uq]\{qrs\}} \\ 0 &= \left(q(r(u(ps))) + r(u(s(qp))) + u(q(p(sr)))\right)_{[ps]\{qrs\}} \end{split}$$

Degree 5 Minimal General Polynomials III

n = d = 5 multiliear polynomial

Reductions	t	i	e
$(pr)((qs)u) = \dots, p < q < r < s < u$			
$0 = (-[pr(s(qu))] + [pr((qs)u)] + p(u[rsq]) - u[pr(qs)])_{\{pq\}}$	166	16	150
(qr)((ps)u), (qr)(u(ps)), (qr)(s(up)), based on 6 longer			
(qr)(s(pu)), (qs)(u(pr)), (qu)(r(sp)) identities	160	10	150
p(q(r(us))), p(q(u(rs))), p(r(s(qu))), p(r(u(qs))), p(u(q(sr)))			
p(u(r(sq))), p(s(u(qr))), q(r(p(su))), q(r(s(pu))), q(r(u(ps)))			
$0 = (q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr))))_{[uq]\{qrs\}}$	150	0	150

• Last reduction uses 10 identities each with 36 terms *(*(*(**))):

$$\begin{split} 0 &= \big(q(r(u(ps))) + r(u(q(sp))) + u(q(p(sr)))\big)_{[uq]\{qrs\}} \\ 0 &= \big(q(r(u(ps))) + r(u(s(qp))) + u(q(p(sr)))\big)_{[ps]\{qrs\}} \end{split}$$

 Only left multiplications, associativity does not matter, valid for any non-associative algebra

$$\begin{aligned} &+p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp)) \\ &-p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr)) \\ &-q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp)) \\ &+q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr)) \end{aligned}$$

$$\begin{split} +p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp)) \\ -p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr)) \\ -q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp)) \\ +q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr)) \\ = & +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp]) \\ -q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp]) \end{split}$$

$$\begin{split} +p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp)) \\ -p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr)) \\ -q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp)) \\ +q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr)) \\ = & +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp]) \\ -q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp]) \\ = & +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp]) \end{split}$$

$$\begin{split} +p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp)) \\ -p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr)) \\ -q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp)) \\ +q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr)) \\ = & +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp]) \\ -q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp]) \\ = & +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp]) \\ = & ([p(q][rs]) + [s(r][qp]))_{\{q,r\}} \end{split}$$

$$\begin{split} +p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp)) \\ -p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr)) \\ -q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp)) \\ +q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr)) \\ = & +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp]) \\ -q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp]) \\ = & +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp]) \\ = & ([p(q][rs]) + [s(r][qp]))_{\{q,r\}} \\ = & ((1+R)[p(q][rs]))_{\{q,r\}} = ((1+R)(p(q(rs))))_{[p,q],[rs],\{q,r\}]} \end{split}$$

$$+p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp))$$

$$-p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr))$$

$$-q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp))$$

$$+q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr))$$

$$= +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp])$$

$$-q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp])$$

$$= +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp])$$

$$= ([p(q][rs]) + [s(r][qp]))_{\{q,r\}}$$

$$= ((1+R)[p(q][rs]))_{\{q,r\}} = ((1+R)(p(q(rs))))_{[p,q],[rs],\{q,r\}}, \text{ also }$$

$$= ([p(q][rs]) + [s(q][rp]))_{\{q,r\}}$$

$$+p(q(rs)) + p(r(qs)) + s(r(qp)) + s(q(rp))$$

$$-p(q(sr)) - p(r(sq)) - s(r(pq)) - s(q(pr))$$

$$-q(p(rs)) - r(p(qs)) - r(s(qp)) - q(s(rp))$$

$$+q(p(sr)) + r(p(sq)) + r(s(pq)) + q(s(pr))$$

$$= +p(q[rs]) + p(r[qs]) + s(r[qp]) + s(q[rp])$$

$$-q(p[rs]) - r(p[qs]) - r(s[qp]) - q(s[rp])$$

$$= +[p(q][rs]) + [p(r][qs]) + [s(r][qp]) + [s(q][rp])$$

$$= ([p(q][rs]) + [s(r][qp]))_{\{q,r\}}$$

$$= ((1+R)[p(q][rs]))_{\{q,r\}} = ((1+R)(p(q(rs))))_{[p,q],[rs],\{q,r\}}, \text{ also }$$

$$= ([p(q][rs]) + [s(q][rp]))_{\{q,r\}}$$

$$= (p(q(rs)))_{[p,q],[rs],\{q,r\}}, \text{ also }$$

Degree 4 Central Multilinear Polynomials continued

Similarly to
$$(p(q(rs)))_{[p,q],[rs],\{q,r\}\{p,s\}}$$
 also
$$(p(q(rs)))_{[p,q],[rs],\{p,r\}\{q,s\}}$$

is a different real degree 4 polynomial.

Degree 4 Central Multilinear Polynomials continued

Similarly to
$$(p(q(rs)))_{[p,q],[rs],\{q,r\}\{p,s\}}$$
 also
$$(p(q(rs)))_{[p,q],[rs],\{p,r\}\{q,s\}}$$

is a different real degree 4 polynomial.

Commutators of the 3 real polynomials with any octonion result in a total of 25 identities of degree 5 (table above).

Degree 4 Central Multilinear Polynomials continued

Similarly to
$$(p(q(rs)))_{[p,q],[rs],\{q,r\}\{p,s\}}$$

also $(p(q(rs)))_{[p,q],[rs],\{p,r\}\{q,s\}}$

is a different real degree 4 polynomial.

Commutators of the 3 real polynomials with any octonion result in a total of 25 identities of degree 5 (table above).

Changing p(q(rs)) to ((pq)r)s, (pq)(rs), (p(qr))s, p((qr)s) does not give new real polynomials.

Outline

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- 10 Conclusions
- Results since May 2024
- 12 References

• CA systems know non-commutativity but not non-associativity.

- CA systems know non-commutativity but not non-associativity.
- Why not using existing packages, like 'DifferentialGeometry' in MAPLE?

- CA systems know non-commutativity but not non-associativity.
- Why not using existing packages, like 'DifferentialGeometry' in MAPLE?
- Total ordering of octonion products needed to define leading terms of IDs to reduce *P*.

- CA systems know non-commutativity but not non-associativity.
- Why not using existing packages, like 'DifferentialGeometry' in MAPLE?
- Total ordering of octonion products needed to define leading terms of IDs to reduce P.
- How to avoid the extremely time-costly splitting of polynomials with, e.g. 250 million terms?

- CA systems know non-commutativity but not non-associativity.
- Why not using existing packages, like 'DifferentialGeometry' in MAPLE?
- Total ordering of octonion products needed to define leading terms of IDs to reduce P.
- How to avoid the extremely time-costly splitting of polynomials with, e.g. 250 million terms?
- How to lower cubic cost of solving lin. alg. system with 10^5 equations?

• For each row in the tables do not do 1 run but a sequencee of them. Start with smaller number of components than 8n and increase it successively.

• For each row in the tables do not do 1 run but a sequencee of them. Start with smaller number of components than 8n and increase it successively.

After each run update relations between coeffs in P.

T. Wolf, S. Anco, P. Lam

- For each row in the tables do not do 1 run but a sequencee of them. Start with smaller number of components than 8n and increase it successively.
- After each run update relations between coeffs in P.
- For multilinear P, when adding more new components to an octonian variable for the next run, set the other components of the variable temporarily to zero.

- For each row in the tables do not do 1 run but a sequencee of them. Start with smaller number of components than 8n and increase it successively.
 - After each run update relations between coeffs in P.
- For multilinear P, when adding more new components to an octonian variable for the next run, set the other components of the variable temporarily to zero.
- Fine tune the number of new components per run.

Outline

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- 9 Results till May 2024
- 10 Conclusions
- Results since May 2024
- 12 References

- $w(\partial_t) = 3$, $w(\partial_x) = 1$, w(u) = 2, w(L) = 2
- Two solutions have the same evolution equation

$$u_t = u_{xxx} + uu_x + u_x u = u_{xxx} + (u^2)_x$$

• Two slightly different Lax pairs

$$LG = G_{xx} + \frac{1}{3}uG, \quad MG = 4G_{xxx} + 2uG_x + u_xG$$

$$LG = G_{xx} + \frac{1}{3}Gu, \quad MG = 4G_{xxx} + 2G_xu + Gu_x$$

- Weights: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 1 \ (<2)$ first try: w(L) = 1,
- More unknowns: f_i (i = 1, ..., 7), l_i (i = 1, 2, 3), m_i (i = 1, ..., 21)

- Weights: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 1 \ (<2)$ first try: w(L) = 1,
- More unknowns: f_i (i = 1, ..., 7), l_i (i = 1, 2, 3), m_i (i = 1, ..., 21)
- Six solutions with 5 free parameters each,

- Weights: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 1 \ (< 2)$ first try: w(L) = 1,
- More unknowns: f_i (i = 1, ..., 7), l_i (i = 1, 2, 3), m_i (i = 1, ..., 21)
- Six solutions with 5 free parameters each,
- Removing non-relevant gauge terms in MG,
- Scaling u and L,
- Rewrite solution by using product commutators [A, B] = AB BA and associators [A, B, C] = (AB)C A(BC)

- Weights: $w(\partial_t) = 3, w(\partial_x) = 1, w(u) = 1 \ (<2)$ first try: w(L) = 1,
- More unknowns: f_i (i = 1, ..., 7), l_i (i = 1, 2, 3), m_i (i = 1, ..., 21)
- Six solutions with 5 free parameters each,
- Removing non-relevant gauge terms in MG,
- Scaling u and L,
- Rewrite solution by using product commutators [A, B] = AB BA and associators [A, B, C] = (AB)C A(BC)
- Result: 2 evolution equations each with 3 Lax pairs

$$u_t = u_{xxx} + \alpha(u^2u_x + uu_xu + u_xu^2) + [u, [u_x, u]]$$

$$LG = G_x - [G, u] + 2Gu$$

$$MG = [G, u_{xx}] - 2Gu_{xx} + 2[G, u_x, u] - [G, [u, u_x] + \alpha([G, u^3] - 2Gu^3)$$

$$LG = G_x + uG$$

$$MG = -u_{xx}G + 2[u_x, u, G] + [u, u_x]G - \alpha u^3G$$

and a similar Lax pair with G on the left in all products.

and a similar Lax pair with G on the left in all products.

New try with next higher $w(L) = 2 \ (> 1)$

New try with next higher $w(L) = 2 \ (> 1)$

Results:

• The same evelutionary equations with higher degree Lax pairs

New try with next higher $w(L) = 2 \ (> 1)$

Results:

- The same evelutionary equations with higher degree Lax pairs
- 2 additional evolution equations each with 2 Lax pairs:

$$u_t = u_{xxx} - 3(u^2u_x + u_xu^2)$$
 (mKdV equation)
 $LG = G_{xx} + (u_x - u^2)G,$
 $MG = 4G_{xxx} + 6(u_x - u^2)G_x + 3(u_{xx} - (u^2)_x)G$

and a similar Lax pair with G on the left in all products.

New try with next higher $w(L) = 2 \ (> 1)$

Results:

- The same evelutionary equations with higher degree Lax pairs
- 2 additional evolution equations each with 2 Lax pairs:

$$u_t = u_{xxx} - 3(u^2u_x + u_xu^2)$$
 (mKdV equation)
 $LG = G_{xx} + (u_x - u^2)G,$
 $MG = 4G_{xxx} + 6(u_x - u^2)G_x + 3(u_{xx} - (u^2)_x)G$

and a similar Lax pair with G on the left in all products.

$$u_t = u_{xxx} + 3u_x^2$$
 (Potential KdV equation)
 $LG = G_{xx} + u_xG$, $MG = 4G_{xxx} + 6u_xG_x + 3u_{xx}G$

and a similar Lax pair with G on the left in all products.

Outline

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- Conclusions
- Results since May 2024
- 12 References

We obtained

• minimal general octonion polynomials multilinear and with repeating factors, both cases for degree 3, 4, 5

- minimal general octonion polynomials multilinear and with repeating factors, both cases for degree 3, 4, 5
- new compact multilinear vanishing identities and central polynomials of degree 4, 5,

- minimal general octonion polynomials multilinear and with repeating factors, both cases for degree 3, 4, 5
- new compact multilinear vanishing identities and central polynomials of degree 4, 5,
- term dropping rules applicable also to higher degree polynomials

- minimal general octonion polynomials multilinear and with repeating factors, both cases for degree 3, 4, 5
- new compact multilinear vanishing identities and central polynomials of degree 4, 5,
- term dropping rules applicable also to higher degree polynomials
- efficient algorithms for computations with octonions

- minimal general octonion polynomials multilinear and with repeating factors, both cases for degree 3, 4, 5
- new compact multilinear vanishing identities and central polynomials of degree 4, 5,
- term dropping rules applicable also to higher degree polynomials
- efficient algorithms for computations with octonions
- insight into using reverse multiplication to formulate new types of symmetries (multifactor and non-associative generalizations of the commutator and the Jordan product)

Conclusion II on Equations and Methods

• We found the octonion KdV, mKdV and potential KdV equation that possess Lax pairs.

Conclusion II on Equations and Methods

- We found the octonion KdV, mKdV and potential KdV equation that possess Lax pairs.
- The method is (mostly) algorithmic.
 - Inputs are $w(u), w(\partial_x), w(\partial_t), w(L)$.
 - The scaling homogeneous ansatz polynomials for F, LG, MG are generated by a separate program, which automatically uses octonion identities up to degree 4 to eliminate redundant terms of degree ≥ 4 .
 - Currently Maple formulates the overdetermined systems.
 - Solution is done by Maple (simple cases) or 'Crack' (larger cases).
 - Start at the lowest possible w(L) and later increase the weight to search for additional variants of evolution equation finally limited by complexity.

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation
- Future work:
 - Find and use degree > 5 identities of octonions to produce general polynomial ansatz for F, LG, MG with minimal number of terms.

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation
- Future work:
 - Find and use degree > 5 identities of octonions to produce general polynomial ansatz for F, LG, MG with minimal number of terms.
 - (✓) Rewrite in REDUCE what is currently in MAPLE

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation
- Future work:
 - Find and use degree > 5 identities of octonions to produce general polynomial ansatz for F, LG, MG with minimal number of terms.
 - (\checkmark) Rewrite in REDUCE what is currently in MAPLE
 - (✓) Run 5th order evolution equations

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation
- Future work:
 - Find and use degree > 5 identities of octonions to produce general polynomial ansatz for F, LG, MG with minimal number of terms.
 - (\checkmark) Rewrite in REDUCE what is currently in MAPLE
 - (✓) Run 5th order evolution equations
 - (\checkmark) Run other scaling weights: $w(u) = \frac{1}{2}$ (e.g. Ibragimov-Shabat equation)

- Different Lax pairs may be useful for different purposes.
 - Inverse scattering transformation (IST)
 - Darboux transformation
- Future work:
 - Find and use degree > 5 identities of octonions to produce general polynomial ansatz for F, LG, MG with minimal number of terms.
 - (\checkmark) Rewrite in REDUCE what is currently in MAPLE
 - (\checkmark) Run 5th order evolution equations
 - (\checkmark) Run other scaling weights: $w(u) = \frac{1}{2}$ (e.g. Ibragimov-Shabat equation)
 - Add complex conjugation u, \bar{u} (e.g. NLS equation)

Outline

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- Conclusions
- Results since May 2024
- 12 References

• Complete re-write in Reduce and using Crack for solving bi-linear overdetermined system

- Complete re-write in Reduce and using Crack for solving bi-linear overdetermined system
 - \rightarrow allowing to check 5th order equations with low L weight

- Complete re-write in Reduce and using Crack for solving bi-linear overdetermined system
 - \rightarrow allowing to check 5th order equations with low L weight
- For solving larger bi-linear overdetermined system (eg. 2000 equations) for (eg. 100) unknown coefficients:

- Complete re-write in Reduce and using Crack for solving bi-linear overdetermined system
 - \rightarrow allowing to check 5th order equations with low L weight
- For solving larger bi-linear overdetermined system (eg. 2000 equations) for (eg. 100) unknown coefficients:
 - Closing a 40 year old, publicly unknown, memory drain in the computer algebra system REDUCE when loading data files,

- Complete re-write in Reduce and using Crack for solving bi-linear overdetermined system
 - \rightarrow allowing to check 5th order equations with low L weight
- For solving larger bi-linear overdetermined system (eg. 2000 equations) for (eg. 100) unknown coefficients:
 - Closing a 40 year old, publicly unknown, memory drain in the computer algebra system REDUCE when loading data files,
 - \rightarrow now unlimited many case distinctions

- Complete re-write in Reduce and using Crack for solving bi-linear overdetermined system
 - \rightarrow allowing to check 5th order equations with low L weight
- For solving larger bi-linear overdetermined system (eg. 2000 equations) for (eg. 100) unknown coefficients:
 - Closing a 40 year old, publicly unknown, memory drain in the computer algebra system REDUCE when loading data files,
 - \rightarrow now unlimited many case distinctions
 - \rightarrow new bottlenecks showing up

- Complete re-write in Reduce and using Crack for solving bi-linear overdetermined system
 - \rightarrow allowing to check 5th order equations with low L weight
- For solving larger bi-linear overdetermined system (eg. 2000 equations) for (eg. 100) unknown coefficients:
 - Closing a 40 year old, publicly unknown, memory drain in the computer algebra system REDUCE when loading data files,
 - \rightarrow now unlimited many case distinctions
 - \rightarrow new bottlenecks showing up
 - Detailed heuristic to minimize # of case distinctions

- Complete re-write in Reduce and using Crack for solving bi-linear overdetermined system
 - \rightarrow allowing to check 5th order equations with low L weight
- For solving larger bi-linear overdetermined system (eg. 2000 equations) for (eg. 100) unknown coefficients:
 - Closing a 40 year old, publicly unknown, memory drain in the computer algebra system REDUCE when loading data files,
 - \rightarrow now unlimited many case distinctions
 - \rightarrow new bottlenecks showing up
 - Detailed heuristic to minimize # of case distinctions
 - Adapting solution strategy to new module strengths

- Complete re-write in Reduce and using Crack for solving bi-linear overdetermined system
 - \rightarrow allowing to check 5th order equations with low L weight
- For solving larger bi-linear overdetermined system (eg. 2000 equations) for (eg. 100) unknown coefficients:
 - Closing a 40 year old, publicly unknown, memory drain in the computer algebra system REDUCE when loading data files,
 - \rightarrow now unlimited many case distinctions
 - \rightarrow new bottlenecks showing up
 - Detailed heuristic to minimize # of case distinctions
 - Adapting solution strategy to new module strengths
- Apply scaling freedom of L, t, x, u and $M \to M + \alpha L^n$ to reduce # of unknown coefficients

$$\leftrightarrow \begin{array}{c} \frac{\mathbf{a} \cdot (b \cdot c)}{c \cdot (b \cdot \mathbf{a})} \quad \text{or} \quad \leftrightarrow \begin{array}{c} \frac{(\mathbf{a} \cdot b) \cdot (c \cdot (\mathbf{d} \cdot e))}{(e \cdot \mathbf{d}) \cdot (c \cdot (b \cdot \mathbf{a}))} \end{array}$$

• Reversing factors:

$$\leftrightarrow \frac{\mathbf{a} \cdot (b \cdot c)}{c \cdot (b \cdot \mathbf{a})} \quad \text{or} \quad \leftrightarrow \frac{(\mathbf{a} \cdot b) \cdot (c \cdot (\mathbf{d} \cdot e))}{(e \cdot \mathbf{d}) \cdot (c \cdot (b \cdot \mathbf{a}))}$$

• If an octonion polynomial is zero then the factor reversed version is also zero.

$$\leftrightarrow \frac{\mathbf{a} \cdot (b \cdot c)}{c \cdot (b \cdot \mathbf{a})} \quad \text{or} \quad \leftrightarrow \frac{(\mathbf{a} \cdot b) \cdot (c \cdot (\mathbf{d} \cdot e))}{(e \cdot \mathbf{d}) \cdot (c \cdot (b \cdot \mathbf{a}))}$$

- If an octonion polynomial is zero then the factor reversed version is also zero.
 - \rightarrow An octonion identity is either palindromic or there exists a reverse dual version of it.

$$\leftrightarrow \frac{\mathbf{a} \cdot (b \cdot c)}{c \cdot (b \cdot \mathbf{a})} \quad \text{or} \quad \leftrightarrow \frac{(\mathbf{a} \cdot b) \cdot (c \cdot (\mathbf{d} \cdot e))}{(e \cdot \mathbf{d}) \cdot (c \cdot (b \cdot \mathbf{a}))}$$

- If an octonion polynomial is zero then the factor reversed version is also zero.
 - \rightarrow An octonion identity is either palindromic or there exists a reverse dual version of it.
 - \rightarrow For each evol. eqn. + Lax pair there is a reverse version unless it is palindromic.

$$\leftrightarrow \frac{\mathbf{a} \cdot (b \cdot c)}{c \cdot (b \cdot \mathbf{a})} \quad \text{or} \quad \leftrightarrow \frac{(\mathbf{a} \cdot b) \cdot (c \cdot (\mathbf{d} \cdot e))}{(e \cdot \mathbf{d}) \cdot (c \cdot (b \cdot \mathbf{a}))}$$

- If an octonion polynomial is zero then the factor reversed version is also zero.
 - \rightarrow An octonion identity is either palindromic or there exists a reverse dual version of it.
 - \rightarrow For each evol. eqn. + Lax pair there is a reverse version unless it is palindromic.
- \bullet Symmetry broken use of identities \to non-symmetric Lax pairs

$w(u)/w(\partial_x)=2$

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
2	1	3	2	$KdV: u_t = u_x u + u u_x + u_{3x}$
				3 sol: 2 reverse dual $L, M, 1$ palindromic L, M

$w(u)/w(\partial_x)=2$

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
2	1	3		$KdV: u_t = u_x u + u u_x + u_{3x}$
				3 sol: 2 reverse dual $L, M, 1$ palindromic L, M
			4,6,8	same $u_t, L_4 = L_2^2, L_6 = L_2^3, L_8 = L_2^4$, both L not
				sym. anymore due to non-sym. use of identities

$w(u)/w(\partial_x)=2$

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
2	1	3	2	$KdV: u_t = u_x u + u u_x + u_{3x}$
				3 sol: 2 reverse dual $L, M, 1$ palindromic L, M
			4,6,8	same $u_t, L_4 = L_2^2, L_6 = L_2^3, L_8 = L_2^4$, both L not
				sym. anymore due to non-sym. use of identities
		5	2	$u_t = 5u_{3x}u + 10u_{2x}u_x + 2u_x(uu) + 10u_xu_{2x}$
				$+2u(u_x u) + 2u(u u_x) + 5u u_{3x} + 5u_{5x}$
				palindromic u_t , 2 symmetric L , both MG not
				symm., due to non-symm. identity usage
				real limit: $u_t = 5u_{5x} + 10uu_{3x} + 20u_xu_{2x} + 6u^2u_x$
				real $u_t = u_{3x} + 2uu_x$ has symmetry
				$u_{\tau} = 3u_{5x} + 10uu_{3x} + 20u_{x}u_{2x} + 10u^{2}u_{x}$
				scaling u, x, t merge both,
				Kaup-Kupershmidt: $u_t = + 10uu_{3x} + 25u_xu_{2x} +$
				Sawata-Kotera: $u_t = + 15uu_{3x} + 15u_xu_{2x} +$

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
2	1	3	2	$KdV: u_t = u_x u + u u_x + u_{3x}$
				3 sol: 2 reverse dual $L, M, 1$ palindromic L, M
			4,6,8	same $u_t, L_4 = L_2^2, L_6 = L_2^3, L_8 = L_2^4$, both L not
				sym. anymore due to non-sym. use of identities
		5	2	$u_t = 5u_{3x}u + 10u_{2x}u_x + 2u_x(uu) + 10u_xu_{2x}$
				$+2u(u_x u) + 2u(u u_x) + 5u u_{3x} + 5u_{5x}$
				palindromic u_t , 2 symmetric L , both MG not
				symm., due to non-symm. identity usage
				real limit: $u_t = 5u_{5x} + 10uu_{3x} + 20u_xu_{2x} + 6u^2u_x$
				real $u_t = u_{3x} + 2uu_x$ has symmetry
				$u_{\tau} = 3u_{5x} + 10uu_{3x} + 20u_{x}u_{2x} + 10u^{2}u_{x}$
				scaling u, x, t merge both,
				$Kaup-Kupershmidt: u_t = + 10uu_{3x} + 25u_xu_{2x} +$
				Sawata-Kotera: $u_t = + 15uu_{3x} + 15u_xu_{2x} +$
			4,6	same u_t , $L_4 = L_2^2$, $L_6 = L_2^3$

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
2	1	3	2	$KdV: u_t = u_x u + u u_x + u_{3x}$
				3 sol: 2 reverse dual $L, M, 1$ palindromic L, M
			4,6,8	same $u_t, L_4 = L_2^2, L_6 = L_2^3, L_8 = L_2^4$, both L not
				sym. anymore due to non-sym. use of identities
		5	2	$u_t = 5u_{3x}u + 10u_{2x}u_x + 2u_x(uu) + 10u_xu_{2x}$
				$+2u(u_x u) + 2u(u u_x) + 5u u_{3x} + 5u_{5x}$
				palindromic u_t , 2 symmetric L , both MG not
				symm., due to non-symm. identity usage
				real limit: $u_t = 5u_{5x} + 10uu_{3x} + 20u_xu_{2x} + 6u^2u_x$
				real $u_t = u_{3x} + 2uu_x$ has symmetry
				$u_{\tau} = 3u_{5x} + 10uu_{3x} + 20u_{x}u_{2x} + 10u^{2}u_{x}$
				scaling u, x, t merge both,
				$Kaup-Kupershmidt: u_t = + 10uu_{3x} + 25u_xu_{2x} +$
				Sawata-Kotera: $u_t = + 15uu_{3x} + 15u_xu_{2x} +$
			4,6	same u_t , $L_4 = L_2^2$, $L_6 = L_2^3$
		7	2,4	palindromic $u_t = 21$ terms, $L_4 = L_2^2$, hypothesis:
				$LG = Gu + w(\partial_t)G_{2x}, LG = uG + w(\partial_t)G_{2x}$

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
1	1	3	1	6 sol, all generalized mKdV: palindromic 1. sol:
				$u_t = a(u_x(uu) + u(u_xu)(1+3a) + u(uu_x)) + u_{3x}$
				$LG = auG + G_x$, 2. sol with reverse L, M
				3. sol: $u_t = a(u_x(uu) + u(u_xu)(1 + 6ab^2)$
				$+u(uu_x) + b[u, u_{2x}] + u_{3x}, LG = b[G, u] + G_x$
				4. sol like 1.,2. but slightly different L, M
				5. sol like 3. but slightly different L, M
				6. sol like 3. but again slightly different L, M

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
1	1	3	1	6 sol, all generalized mKdV: palindromic 1. sol:
				$u_t = a(u_x(uu) + u(u_xu)(1+3a) + u(uu_x)) + u_{3x}$
				$LG = auG + G_x$, 2. sol with reverse L, M
				3. sol: $u_t = a(u_x(uu) + u(u_xu)(1 + 6ab^2)$
				$+u(uu_x) + b[u, u_{2x}] + u_{3x}, LG = b[G, u] + G_x$
				4. sol like 1.,2. but slightly different L, M
				5. sol like 3. but slightly different L, M
				6. sol like 3. but again slightly different L, M
			2	10 sol, 6 soln like for $w(L) = 1$ only
				with higher weight L .
				4 sol for potential KdV $u_t = 3u_x^2 + u_{3x}$

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
1	1	3	1	6 sol, all generalized mKdV: palindromic 1. sol:
				$u_t = a(u_x(uu) + u(u_xu)(1+3a) + u(uu_x)) + u_{3x}$
				$LG = auG + G_x$, 2. sol with reverse L, M
				3. sol: $u_t = a(u_x(uu) + u(u_xu)(1 + 6ab^2)$
				$+u(uu_x) + b[u, u_{2x}] + u_{3x}, LG = b[G, u] + G_x$
				4. sol like 1.,2. but slightly different L, M
				5. sol like 3. but slightly different L, M
				6. sol like 3. but again slightly different L, M
			2	10 sol, 6 soln like for $w(L) = 1$ only
				with higher weight L .
				4 sol for potential KdV $u_t = 3u_x^2 + u_{3x}$
			3	6 sol, same u_t as for $w(L) = 1$, higher weight L

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
1	1	3	1	6 sol, all generalized mKdV: palindromic 1. sol:
				$u_t = a(u_x(uu) + u(u_xu)(1+3a) + u(uu_x)) + u_{3x}$
				$LG = auG + G_x$, 2. sol with reverse L, M
				3. sol: $u_t = a(u_x(uu) + u(u_xu)(1 + 6ab^2)$
				$+u(uu_x) + b[u, u_{2x}] + u_{3x}, LG = b[G, u] + G_x$
				4. sol like 1.,2. but slightly different L, M
				5. sol like 3. but slightly different L, M
				6. sol like 3. but again slightly different L, M
			2	10 sol, 6 soln like for $w(L) = 1$ only
				with higher weight L .
				4 sol for potential KdV $u_t = 3u_x^2 + u_{3x}$
			3	6 sol, same u_t as for $w(L) = 1$, higher weight L
			4	14 sol, apart from all above, also solns with
				$u_t = -a^2(u_x(uu) + u(uu_x)) + 3u_x$ and
				$u_t = au_{2x}u + bu_x(uu) + cu(uu_x) + u_{3x}$
				with symmetries of real limit up to order 13:
				$u_{\tau} = 3tu_{3x} + 3atuu_{2x} + 3btu^2u_x + xu_x + u$
				$u_{\tau} = u_x$

$$w(u)/w(\partial_x) = 1$$
 continued

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
1	1	5	1	6 soln, need to be re-computed using higher
				degree identities to be simpler and usable

$w(u)/w(\partial_x) = 1$ continued

w(u)	$w(\partial_x)$	$w(\partial_t)$	w(L)	Comments
1	1	5	1	6 soln, need to be re-computed using higher
				degree identities to be simpler and usable
1	1	5	2	10 soln, 8 of them need to use higher degree
				identities in a re-computation to get simpler
				result, 2 soln have palindromic u_t :
				$u_t = u_{3x}u_x + u_{2x}^2 + \frac{2}{5}u_x^3 + u_x u_{3x} + u_{5x}$
				$LG = u_x G + 5G_x$, 2. sol with reverse L, M
				Hypothesis: for odd $w(\partial_t)$:
				$LG = u_x G + w(\partial_t) G_{2x} + \text{reverse } L, M$

$$w(u)/w(\partial_x) = 1/2$$

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
1	2	3	1	3 sol all like $u_t = au_x u + buu_x$. The special case
				of anti-palindromiC $u_t = [u, u_x]$ has palindromic
				$LG = uG + Gu$ and anti-palin. $MG = [G, u_x]$

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
1	2	3	1	3 sol all like $u_t = au_x u + buu_x$. The special case
				of anti-palindromiC $u_t = [u, u_x]$ has palindromic
				$LG = uG + Gu$ and anti-palin. $MG = [G, u_x]$
			25	3 sol, all like for $w(L) = 1$ with same symmetry
				properties, only with L having one more u as
				factor for each increased $w(L)$. Example:
				$L_2 = u^2 G \text{ or } = Gu^2 \text{ or } = a(u^2 G + Gu^2) + buGu$
		4	15	no solutions

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
1	2	3	1	3 sol all like $u_t = au_x u + buu_x$. The special case
				of anti-palindromiC $u_t = [u, u_x]$ has palindromic
				$LG = uG + Gu$ and anti-palin. $MG = [G, u_x]$
			25	3 sol, all like for $w(L) = 1$ with same symmetry
				properties, only with L having one more u as
				factor for each increased $w(L)$. Example:
				$L_2 = u^2 G \text{ or } = Gu^2 \text{ or } = a(u^2 G + Gu^2) + buGu$
		4	15	no solutions
		5	1	anti-palindromic: $u_t = [u, u_{2x}]$ with
				arbitrary multiples of products $u_x u^3$ in all
				multiplication orders of u, u_x being compatible

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
1	2	3	1	3 sol all like $u_t = au_x u + buu_x$. The special case
				of anti-palindromiC $u_t = [u, u_x]$ has palindromic
				$LG = uG + Gu$ and anti-palin. $MG = [G, u_x]$
			25	3 sol, all like for $w(L) = 1$ with same symmetry
				properties, only with L having one more u as
				factor for each increased $w(L)$. Example:
				$L_2 = u^2 G \text{ or } = Gu^2 \text{ or } = a(u^2 G + Gu^2) + buGu$
		4	15	no solutions
		5	1	anti-palindromic: $u_t = [u, u_{2x}]$ with
				arbitrary multiples of products $u_x u^3$ in all
				multiplication orders of u, u_x being compatible
		6	14	(Ibragimov-Shabat) no solutions

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
1	2	3	1	3 sol all like $u_t = au_x u + buu_x$. The special case
				of anti-palindromiC $u_t = [u, u_x]$ has palindromic
				$LG = uG + Gu$ and anti-palin. $MG = [G, u_x]$
			25	3 sol, all like for $w(L) = 1$ with same symmetry
				properties, only with L having one more u as
				factor for each increased $w(L)$. Example:
				$L_2 = u^2 G \text{ or } = Gu^2 \text{ or } = a(u^2 G + Gu^2) + buGu$
		4	15	no solutions
		5	1	anti-palindromic: $u_t = [u, u_{2x}]$ with
				arbitrary multiples of products $u_x u^3$ in all
				multiplication orders of u, u_x being compatible
		6	14	(Ibragimov-Shabat) no solutions
		7	1	$u_t = [u_{3x}, u], LG = uG, MG = u_{3x}G + 2Gu_{3x}$
				and 5 other solution

$$w(u)/w(\partial_x) = 1/2$$

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
1	2	3	1	3 sol all like $u_t = au_x u + buu_x$. The special case
				of anti-palindromiC $u_t = [u, u_x]$ has palindromic
				$LG = uG + Gu$ and anti-palin. $MG = [G, u_x]$
			25	3 sol, all like for $w(L) = 1$ with same symmetry
				properties, only with L having one more u as
				factor for each increased $w(L)$. Example:
				$L_2 = u^2 G$ or $= Gu^2$ or $= a(u^2 G + Gu^2) + buGu$
		4	15	no solutions
		5	1	anti-palindromic: $u_t = [u, u_{2x}]$ with
				arbitrary multiples of products $u_x u^3$ in all
				multiplication orders of u, u_x being compatible
		6	14	(Ibragimov-Shabat) no solutions
		7	1	$u_t = [u_{3x}, u], LG = uG, MG = u_{3x}G + 2Gu_{3x}$
				and 5 other solution
		7	2	6 sol, needs re-run using higher deree identities
				1 sol: $u_t = [u_{3x}, u], LG = uG, MG = u_{3x}G + 2Gu_{3x}$

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
3	2	5	3	3 sol, 1: $u_t = au_x u + buu_x$, 2: rev sym soln
				3: special case: anti-palindromic $u_t = [u, u_x]$
				palin. $LG = uG + Gu$, anti-pal. $MG = [G, u_x]$

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
3	2	5	3	3 sol, 1: $u_t = au_x u + buu_x$, 2: rev sym soln
				3: special case: anti-palindromic $u_t = [u, u_x]$
				palin. $LG = uG + Gu$, anti-pal. $MG = [G, u_x]$
			6,9,12	as above with 1 extra u in LG

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
3	2	5	3	3 sol, 1: $u_t = au_x u + buu_x$, 2: rev sym soln
				3: special case: anti-palindromic $u_t = [u, u_x]$
				palin. $LG = uG + Gu$, anti-pal. $MG = [G, u_x]$
			6,9,12	as above with 1 extra u in LG
			11	1 sol, same as 3. sol of $w(L) = 3$ but
				with higher degree LG

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
3	2	5	3	3 sol, 1: $u_t = au_x u + buu_x$, 2: rev sym soln
				3: special case: anti-palindromic $u_t = [u, u_x]$
				palin. $LG = uG + Gu$, anti-pal. $MG = [G, u_x]$
			6,9,12	as above with 1 extra u in LG
			11	1 sol, same as 3. sol of $w(L) = 3$ but
				with higher degree LG
		7	3,6,9,12	3 sol, all $u_t = [u, u_{2x}]$, same MG
				2 sol reverse sym, the 3rd palindromic

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
3	2	5	3	$3 \text{ sol}, 1: u_t = au_x u + buu_x, 2: \text{ rev sym soln}$
				3: special case: anti-palindromic $u_t = [u, u_x]$
				palin. $LG = uG + Gu$, anti-pal. $MG = [G, u_x]$
			6,9,12	as above with 1 extra u in LG
			11	1 sol, same as 3. sol of $w(L) = 3$ but
				with higher degree LG
		7	3,6,9,12	3 sol, all $u_t = [u, u_{2x}]$, same MG
				2 sol reverse sym, the 3rd palindromic
				2 sol with $u_t = u_x^2$ both reverse sym.

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
3	2	5	3	$3 \text{ sol}, 1: u_t = au_x u + buu_x, 2: \text{ rev sym soln}$
				3: special case: anti-palindromic $u_t = [u, u_x]$
				palin. $LG = uG + Gu$, anti-pal. $MG = [G, u_x]$
			6,9,12	as above with 1 extra u in LG
			11	1 sol, same as 3. sol of $w(L) = 3$ but
				with higher degree LG
		7	3,6,9,12	3 sol, all $u_t = [u, u_{2x}]$, same MG
				2 sol reverse sym, the 3rd palindromic
				2 sol with $u_t = u_x^2$ both reverse sym.
			11,13,14	1 sol u_t like 3. sol of $w(L) = 3$

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
3	2	5	3	$3 \text{ sol}, 1: u_t = au_x u + buu_x, 2: \text{ rev sym soln}$
				3: special case: anti-palindromic $u_t = [u, u_x]$
				palin. $LG = uG + Gu$, anti-pal. $MG = [G, u_x]$
			6,9,12	as above with 1 extra u in LG
			11	1 sol, same as 3. sol of $w(L) = 3$ but
				with higher degree LG
		7	3,6,9,12	3 sol, all $u_t = [u, u_{2x}]$, same MG
				2 sol reverse sym, the 3rd palindromic
				2 sol with $u_t = u_x^2$ both reverse sym.
			11,13,14	1 sol u_t like 3. sol of $w(L) = 3$
		9	3,6,9	3 sol like $w(\partial_t) = 5, w(L) = 3$
				only with $u_t = [u, u_{3x}]$

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
3	2	5	3	$3 \text{ sol}, 1: u_t = au_x u + buu_x, 2: \text{ rev sym soln}$
				3: special case: anti-palindromic $u_t = [u, u_x]$
				palin. $LG = uG + Gu$, anti-pal. $MG = [G, u_x]$
			6,9,12	as above with 1 extra u in LG
			11	1 sol, same as 3. sol of $w(L) = 3$ but
				with higher degree LG
		7	3,6,9,12	$3 \text{ sol, all } u_t = [u, u_{2x}], \text{ same } MG$
				2 sol reverse sym, the 3rd palindromic
				2 sol with $u_t = u_x^2$ both reverse sym.
			11,13,14	1 sol u_t like 3. sol of $w(L) = 3$
		9	3,6,9	3 sol like $w(\partial_t) = 5, w(L) = 3$
				only with $u_t = [u, u_{3x}]$
			5,10	3 sol like $w(\partial_t) = 5, w(L) = 3$
				only with $u_t = [u_x, u_{2x}]$

w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
3	2	5	3	$3 \text{ sol}, 1: u_t = au_x u + buu_x, 2: \text{ rev sym soln}$
				3: special case: anti-palindromic $u_t = [u, u_x]$
				palin. $LG = uG + Gu$, anti-pal. $MG = [G, u_x]$
			6,9,12	as above with 1 extra u in LG
			11	1 sol, same as 3. sol of $w(L) = 3$ but
				with higher degree LG
		7	3,6,9,12	3 sol, all $u_t = [u, u_{2x}]$, same MG
				2 sol reverse sym, the 3rd palindromic
				2 sol with $u_t = u_x^2$ both reverse sym.
			11,13,14	1 sol u_t like 3. sol of $w(L) = 3$
		9	3,6,9	3 sol like $w(\partial_t) = 5, w(L) = 3$
				only with $u_t = [u, u_{3x}]$
			5,10	3 sol like $w(\partial_t) = 5, w(L) = 3$
				only with $u_t = [u_x, u_{2x}]$
		11	3,6,9	3 sol with $u_t = [u, u_{4x}] + au_x u^3 + bu u_x u^2$
				$+cu^2u_xu+du^3u_x$

[24/25]	(a)	(a)	(T)	Comments
w(u)	$w(\partial_x)$	$w(\partial_x)$	w(L)	Comments
3	2	5	3	3 sol, 1: $u_t = au_x u + buu_x$, 2: rev sym soln
				3: special case: anti-palindromic $u_t = [u, u_x]$
				palin. $LG = uG + Gu$, anti-pal. $MG = [G, u_x]$
			6,9,12	as above with 1 extra u in LG
			11	1 sol, same as 3. sol of $w(L) = 3$ but
				with higher degree LG
		7	3,6,9,12	$3 \text{ sol, all } u_t = [u, u_{2x}], \text{ same } MG$
				2 sol reverse sym, the 3rd palindromic
				2 sol with $u_t = u_x^2$ both reverse sym.
			11,13,14	1 sol u_t like 3. sol of $w(L) = 3$
		9	3,6,9	3 sol like $w(\partial_t) = 5, w(L) = 3$
				only with $u_t = [u, u_{3x}]$
			5,10	3 sol like $w(\partial_t) = 5, w(L) = 3$
				only with $u_t = [u_x, u_{2x}]$
		11	3,6,9	3 sol with $u_t = [u, u_{4x}] + au_x u^3 + buu_x u^2$
				$+cu^2u_xu + du^3u_x$
		11	11	1 sol with same u_t

Conclusion IV on Observations

- Increasing w(L) can show new integrable equations with same other weights (eg. mKdV \rightarrow potential KdV).
- If a set of weights of $u, \partial_x, \partial_t, L$ includes an integrable equation then increasing w(L) in fixed intervals gives more lax pairs for same equation.
- Increasing $w(\partial_t)$ in fixed intervals show higher symmetries of integrable equations.

- Goal: Find octonion version of Ibragimov-Shabat, Kaup Kupershmidt, Sawata Kotera if they exist
 - \rightarrow Checking higher weights of L

- Goal: Find octonion version of Ibragimov-Shabat, Kaup Kupershmidt, Sawata Kotera if they exist
 - \rightarrow Checking higher weights of L
- Trying to determine and use all 6th degree octonion identities
- Last resort in solving non-lin. alg. system: Groebner basis computation

- Goal: Find octonion version of Ibragimov-Shabat, Kaup Kupershmidt, Sawata Kotera if they exist
 - \rightarrow Checking higher weights of L
- Trying to determine and use all 6th degree octonion identities
- Last resort in solving non-lin. alg. system: Groebner basis computation
 - \rightarrow implement dynamically changing ordering of variables

- Goal: Find octonion version of Ibragimov-Shabat, Kaup Kupershmidt, Sawata Kotera if they exist
 - \rightarrow Checking higher weights of L
- Trying to determine and use all 6th degree octonion identities
- Last resort in solving non-lin. alg. system: Groebner basis computation
 - \rightarrow implement dynamically changing ordering of variables
 - \rightarrow implement dynamical detection of overdet. sub-systems

- Goal: Find octonion version of Ibragimov-Shabat, Kaup Kupershmidt, Sawata Kotera if they exist
 - \rightarrow Checking higher weights of L
- Trying to determine and use all 6th degree octonion identities
- Last resort in solving non-lin. alg. system: Groebner basis computation
 - \rightarrow implement dynamically changing ordering of variables
 - \rightarrow implement dynamical detection of overdet. sub-systems
 - \rightarrow add probabilistic module selection instead of rigid heuristic

- Goal: Find octonion version of Ibragimov-Shabat, Kaup Kupershmidt, Sawata Kotera if they exist
 - \rightarrow Checking higher weights of L
- Trying to determine and use all 6th degree octonion identities
- Last resort in solving non-lin. alg. system: Groebner basis computation
 - \rightarrow implement dynamically changing ordering of variables
 - \rightarrow implement dynamical detection of overdet. sub-systems
 - \rightarrow add probabilistic module selection instead of rigid heuristic

Outstanding Mathematical Challenges

- Use Lax pairs to compute other features of integrability.
- Are multiple Lax pairs useful for anything?
- Is there some upper bound for the weight (degree) of L for a Lax Pair to exit for a given integrable octonion equation?

Outline

- Introduction
- 2 Outline of Method
- 3 Octonion Identities
- 4 Motivation
- 6 Computing Idendities
- 6 Known Polynomials
- All Polynomials
- 8 Implementation
- Results till May 2024
- Conclusions
- Results since May 2024
- References

References I

- Ruth Moufang (1935), "Zur Struktur von Alternativkörpern", Math. Ann., 110: 416–430, doi:10.1007/bf01448037
- John C. Baez "The Octonions", https://arxiv.org/abs/math/0105155
 - Michel L. Racine, "Minimal identities of octonion algebras", Journal of Algebra Volume 115, Issue 1, 15 May 1988, Pages 251-260
 https://www.sciencedirect.com/science/article/pii/0021869388902943
- Irvin R. Hentzel, Luiz A. Peresi "Identities of Cayley-Dickson Algebras" Journal of Algebra 188, 292-309 (1997)
- Ivan Shestakov, Natalia Zhukavets, "Skew-symmetric identities of octonions", Journal of Pure and Applied Algebra 213 (2009) 479–492

References II

- A.Restuccia, A.Sotomayor, J.P.Veiro, "Integrability of the Korteweg-de Vries equation valued on a Cayley-Dickson algebra", arXiv:1609.05410v1 [math-ph] 18 Sep 2016
- A. Restuccia, A. Sotomayor (2017). Singular Lagrangians and Its Corresponding Hamiltonian Structures. In H. Canbolat (Ed.), Lagrangian Mechanics (pp. Ch. 1). IntechOpen.
- A. Restuccia, A. Sotomayor, J.P. Veiro (2018). A new integrable equation valued on a Cayley-Dicksonalgebra. Journal Physics A: Mathematical and Theoretical 51 (34), 345203.
- M. Fernandez, A. Restuccia, A. Sotomayor. (2019). On the hamiltonian formulation of an octonionic integrable extension for the Korteweg-de Vries equation. Journal of Physics: Conference Series 1391 (1), 012151.
- Julia Cen, Andreas Fring, "Multicomplex solitons". Journal of Nonlinear Mathematical Physics, Vol. 27, No. 1 (2020) 17–35 https://link.springer.com/content/pdf/10.1080/14029251.2020.1683963.pdf

The End

Thank you!