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2d Faces
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The object of interest is an affine linear relation

0 = Q := q0 + q1f00 + q2f01 + . . .+ q15f00f01f10f11

between 4 scalar values f00, f01, f10, f11 attached to the 4
corners of a square. This is called a ‘face relation’. It allows to
compute any one of the 4 values fij from the 3 others.

Of interest are such relations, i.e. values of coefficients
q0, . . . ,q15, which are 3d consistent in the following sense.
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The Consistence Condition
Using the face relation 6 times for the 6 squares of the surface
of a cube with values f000, f001, ..., f111 associated with the
corners, the following must hold.

I Given are the 4 independent values f000, f001, f010, f100.
I Use 3 face relations to compute f011, f101, f110.
I Use the remaining 3 face relations to compute f111 three

times.
I The three expressions for f111 must coincide for arbitrary

values of the independent f000, f001, f010, f100.
I This gives polynomial conditions for the unknown

coefficients q0, ..,q15 which have to be satisfied identically
in the black corner values f000, f001, f010, f100.

This type of computation has been done before by Adler,
Bobenko and Suris. Our aim is to compute 3d faces that are 4d
consistent. For more details see

Tsarev, S.P. and Wolf, T.: Classification of 3-dimensional
integrable scalar discrete equations, (2007) arXiv:0706.2464,
Lett. in Math. Phys. DOI:10.1007/s11005-008-0230-2.
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The Setup

I affine linearity of Q:
A 3d cube has 23 = 8 corner values f000, f001, . . . , f111,

→ Q = q0 + q1f000 + q2f001 + . . .+ q255f000f001 . . . f111

has 28 = 256 terms with 256 undetermined coefficients qα.

I 4d consistency:
I Use 4 face relations to compute f0111, f1011, f1101, f1110 in

terms of the 11 independent f0000, f0001, f0010, . . . , f1010, f1100.
I Compute f1111 4 times from the remaining 4 face relations,

require the equality of the 4 f1111, giving 3 relations to be
fulfilled identically in the 11 independent f ’s.

I Splitting wrt. the 11 independent f ’s gives polynomial
conditions for the unknowns qα.
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Size of Conditions

dimension of face n 2 3 4
# of f -variables in face formula 2n 4 8 16
# of terms in face formula
(= # of undetermined
coefficients qD in Qn )

22n
16 256 65536

# of all f -variables
in (n + 1)-dim. hypercube 2n+1 8 16 32

# of indep. f -variables
in (n + 1)-dim. hypercube 2n+1 − n − 2 4 11 26

# of n-dim. faces
in (n + 1)-dim. hypercube 2(n + 1) 6 8 10

# of consistency conditions n 2 3 4
upper bound on the # of terms
of each condition 2{2n+1(n+1)−2n−1} 5.2 × 105 1.4 × 1017 2.8 × 1045

total degree of the qD
in each condition 2n + 2 6 8 10

upper bound estimate of the
# of equations resulting from
splitting each condition

2n(2n + 2)
(

2n+1−n−3
)

864 6.4 × 109 8.0 × 1025

estimated average # of terms
in each equation

22n+1(n+1)−2n−1

2n(2n+2)
(

2n+1−n−3
) 606 2.2 × 107 3.5 × 1019

Table: Size and number of consistency conditions



Difficulties

1. Strictly speaking, in order to formulate even only the
smallest subset of conditions one would have to formulate
at least one consistency condition (by performing steps 1,
2 fully and 3 - 6 for at least two xk = 1 face relations before
splitting) i.e. to generate an expression with
2{2

n+1(n+1)−2n−1} (= 1.7× 1017 for n = 3) terms.

2. If one found a way around this hurdle then the resulting
equations are of high degree 2n + 2 with on average many
terms.

3. Even if one were able to generate 100,000’s of equations
and thus find shorter ones which one could solve for some
unknowns in terms of others, one would face the problem
that many cases and sub-sub-cases have to be
investigated due to the high degree of the equations.
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Simplifications I

Cubical symmetry is characterized by 3 ± in

Q = ±Q|x↔y = ±Q|y↔−y = ±Q|z↔−z .

From the 8 combinations of the 3 signs only 3 combinations
allow not identically vanishing Q.

For the hardest of these 3 symmetry types (+++) this leads to
a reduction of the number of terms for each consistency
condition from 1017 to about 1014 according to a study
performed with the CA system FORM, although intermediate
expressions are expected to have around 1015 terms.
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Cubical Symmetry

The nonempty symmetry classes of formulas Q for face
dimensions 2,3,4 are:

n types of symmetry, number of parameters
number of parameters and terms in SL2-invariant subcases

2 (+−): 1 param.; 4 terms 1 param.; 4 terms
(−+): 3 param.; 10 terms none
(++): 6 param.; 16 terms 1 param.; 6 terms

3 (−−−): 1 param.; 24 terms 1 param.; 24 terms
(−++): 13 param.; 186 terms none
(+++): 22 param.; 256 terms 3 param.; 114 terms

4 (−−−−): 94 param.; 29208 terms 5 param.; 15480 terms
(+−−−): 77 param.; 26112 terms none
(−+++): 349 param.; 60666 terms 3 param.; 15809 terms
(++++): 402 param.; 216 terms 18 param.; 96314 terms

Table: Symmetry classification of the face formulas w.r.t the complete
symmetry group of the cube



Simplifications II

Probing
There are 11 independent (splitting) variables
fα : f0000, f0001, . . . f1100 (with at most two 1’s in the index).

I replace some (:= z) of the fα by zero,
(+) smaller expressions, fewer unknowns qD

(+) → tendency of triangularization because of 3d face formula
0 = Q = q0 + q1f000 + . . .+ q255f000f001f010f011f100f101f110f111

I replace some (:= u) of the remaining fα by a random
integer 6= 0
(+) smaller expressions
(–) fewer split variables

I keep the remaining s := 11− z − u variables fα symbolic.
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Probing in Action

I start with z = 9,u = 0, s = 2,

I generate alg. conditions in steps 1-7, write them into a file
I start solution process, reading in equations from file when

needed,
I generate a new file when all equations are read in,
I repeat all until no new independent equations are

generated
I generalize parameters (change u = 0 to 1 and decrease z,

or change u = 1 to 0 and increase s),
I continue generalization until all qD appear and no new

independent equations are generated,
I solve the remaining equations in the solution process.
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Two Phases

1. Computing a solution by the above steps and generalizing
to about z = 1,u = 0, s = 10 (limited by memory), so close
to the general case z = 0,u = 0, s = 11.

2. Giving a probabilistic proof by showing many times that all
equations generated under z = 0,u = 5, s = 6 (which
involve all qD) are solved by the obtained solution.

(Later by performing a brute force test using the computer
algebra system FORM solutions are checked again
rigorously and independently but it needs a special order
of substitutions to be able to complete the test.)
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Negative Effects of Probing

(–) accidental disappearence of coefficients of
f11...101...1, f11...11 when trying to solve face relations for
them,

(–) accidental factorization of some face relations,
(–) triangularization results in the need to generate many

equations.



Negative Effects of Probing

(–) accidental disappearence of coefficients of
f11...101...1, f11...11 when trying to solve face relations for
them,

(–) accidental factorization of some face relations,

(–) triangularization results in the need to generate many
equations.



Negative Effects of Probing

(–) accidental disappearence of coefficients of
f11...101...1, f11...11 when trying to solve face relations for
them,

(–) accidental factorization of some face relations,
(–) triangularization results in the need to generate many

equations.



Outline
Differential Geometry

3d Faces that are 4d Consistent

Difficulties

Simplifications
Cubical Symmetry
Probing

Filling Holes by Digging new Ones

Solutions

Parallelization of the Computation
Guidance Principles
Overall Structure
Case Splitting
Flexibility
Safety
To Do



Triangularization
(+) Early equations involve only few unknowns qD and can

thus be solved / be simplified / be used to simplify others
more easily.

(–) After generating the first 109 equations (of the 6.4× 109

equations) the obtained system is still not equivalent to the
full system of conditions.

Solution:
Use any relations of the form qi = qi(qj) known from the
solution process in formulating consistency conditions.
(+) Millions of equations that are identically satisfied modulo

the preliminary solution do not get formulated.
(+) Equations that get formulated are much shorter (involving

only dozens or 100’s of terms instead of 1000’s or millions.
(–) As the computation splits into cases and (sub−)10−15cases

the generated conditions are only valid in the
corresponding case and its sub-cases→ very many files of
generated equations (e.g. too many to do in unix: rm *).
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Solution

Have an automated (or if too difficult then interactive)
automated solution process where solution steps alternate with
reading new equations from a file and the generation of new
files of equations.

(+) easy to do within CRACK with its flexible priority list. This
needs just 2 more ‘modules’, one for generating a new file
and one for reading from a file and it needs to find the right
place for both modules within the priority list.

(–) needs detailed programming if all should be done
automatically for all sub-sub-cases.
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Accidental Factorization of Face Relations

We go back to the 2nd problem of ‘probing’.

For some face relation: 0 = Ak (fα)f1..101..1 + Bk (fα)
it may be Pk := GCD(Ak ,Bk ) 6= 1 .

→ substitutions f1..101..1 = −Bk/Ak loose solutions which make
Pk (qD, fα) = 0
→ replace computed consistency conditions 0 = Ci(qD, fα) by
conditions 0 = PkCi ,∀i and then split wrt. fα
→ better split first Pk = 0→ Pkl = 0 and Ci = 0→ Cij = 0 and
consider the system 0 = PklCij ∀l , i , j .
Repeat this for each factor of each GCD from each substitution,
also the substitution of f11...11.
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Results

Case (+ + +) : 5 solutions

Case (−++) : 3 solutions

Case (−−−) : 1 solution



A Solution with (+ + +) Symmetry

Q = q105
(
f001f010f100f111 + f000f011f101f110

)
+

q107
(
f001f010f100f110f111 + f001f010f100f101f111 + f001f010f011f100f111 +

f000f011f101f110f111 + f000f011f100f101f110 + f000f010f011f101f110 +

f000f001f011f101f110 + f000f001f010f100f111
)
+

q2
107

q105

(
f001f010f100f101f110f111 + f001f010f011f100f110f111 +

f001f010f011f100f101f111 + f000f011f100f101f110f111 +

f000f010f011f101f110f111 + f000f010f011f100f101f110 +

f000f001f011f101f110f111 + f000f001f011f100f101f110 +

f000f001f010f100f110f111 + f000f001f010f100f101f111 +

f000f001f010f011f101f110 + f000f001f010f011f100f111
)
+

q3
107

q2
105

(
f001f010f011f100f101f110f111 + f000f010f011f100f101f110f111 +

f000f001f011f100f101f110f111 + f000f001f010f100f101f110f111 +

f000f001f010f011f101f110f111 + f000f001f010f011f100f110f111 +

f000f001f010f011f100f101f111 + f000f001f010f011f100f101f110
)
+

2
q4

107

q3
105

(
f000f001f010f011f100f101f110f111

)



Trivialization

Möbius transformations keep 0 = Q affine linear:

1. fijk 7→ q105
q107

fijk and Q 7→ q4
107

q5
105

Q (this eliminates the parametric
q105 and q107)

2. fijk 7→ 1
fijk

(and removing the denominator in Q afterwards)

3. fijk 7→ fijk − 1.
This produces the simplified form
0 = Q = f001f010f100f111 + f000f011f101f110 that can be linearized:
log(−...) = log(...) showing that the solution is trivial.



The Solution with (−−−) Symmetry

Main result:
The following is the only non-trivial 3d affine linear face formula
with cubical symmetry that is 4d consistent:

Q = (f100 − f001)(f010 − f111)(f101 − f110)(f011 − f000)−

(f001 − f010)(f111 − f100)(f000 − f101)(f110 − f011).
(1)

This is the discrete Schwarzian bi-Kadomtsev-Petviashvili
system (dBKP-system) — an integrable discrete system
(Nimmo, Schief (1998) and Konopelchenko, Schief (2002)). It
appears in many different contexts.
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Guidance Principles I

I Parallel computer algebra is hardly justified by a single
application→ aim at producing more generally applicable
parallel programs together with the application.

I Parallelization should be flexible wrt. available hardware
which is expensive and designed for numerical
computations in batch mode and not for doing symbolic
computations interactively.

I The effort in exchanging symbolic expressions is
considerably large because a tree of cells linked through
pointers has to be packed into a linear data structure, to be
communicated and then to be unpacked. Therefore
substantial subroutines leading to coarse grain parallelism
should be parallelized first.
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Guidance Principles II

I The purpose of parallel computer algebra is to do large
computations but large computations carry the risk of an
explosion of the size of expressions, therefore for parallel
CA extra precautions should be made to be save against
too strong expression swell.

I The more CPUs/nodes are involved in a single
computation and the longer computations take (days,
weeks or even longer) the more fault tolerant the whole
setup has to be against hardware failure and partial or total
system shut downs.
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Overall Structure

Computations are done with the package CRACK running under
(Parallel) REDUCE. All features discussed below apply to the
solving of any system (algebraic, ODEs, PDEs).

The package CRACK has a modular structure: about 40
different modules callable with different parameters→ about 70
interchangeable calls. A selected subset of modules is listed in
a priority list which determines the solution strategy.

Modules are sorted: least risky and potentially most beneficial
→ most costly and potentially most length increasing.

This list is easy to change interactively or dynamically.

Parallelization is currently restricted to a parallel investigation of
the different cases and subcases (for algebraic and differential
problems). This is the most coarse grain parallelization
possible.
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Case Splitting

Some modules split the computation into different cases, for
example,

I by considering different factors of a factorizable equation to
be zero,

I by considering expressions of a pre-assigned list of
expressions to be zero or non-zero,

I by considering coefficients of linearly occuring unknowns
in one equation to be zero or not in order to do
substitutions in the non-zero case,

I by considering a separant in a differential equation to be
zero or not in order to do a reduction in a differential
Gröbner basis computation, or

I by considering the most often occuring factor in a system
of equations to be zero or non-zero (but only factors which
if set to zero yield substitutions).
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Gröbner basis computation, or

I by considering the most often occuring factor in a system
of equations to be zero or non-zero (but only factors which
if set to zero yield substitutions).



Case Splitting

Some modules split the computation into different cases, for
example,

I by considering different factors of a factorizable equation to
be zero,

I by considering expressions of a pre-assigned list of
expressions to be zero or non-zero,

I by considering coefficients of linearly occuring unknowns
in one equation to be zero or not in order to do
substitutions in the non-zero case,

I by considering a separant in a differential equation to be
zero or not in order to do a reduction in a differential
Gröbner basis computation, or

I by considering the most often occuring factor in a system
of equations to be zero or non-zero (but only factors which
if set to zero yield substitutions).



Case Splitting

Some modules split the computation into different cases, for
example,

I by considering different factors of a factorizable equation to
be zero,

I by considering expressions of a pre-assigned list of
expressions to be zero or non-zero,

I by considering coefficients of linearly occuring unknowns
in one equation to be zero or not in order to do
substitutions in the non-zero case,

I by considering a separant in a differential equation to be
zero or not in order to do a reduction in a differential
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Flexibility
Available hardware:
several clusters of the SHARCNET consortium with, for
example, 128 Itanium2 CPUs, 256 GB (silky), 384 Opteron
CPUs (bull) or 3072 CPU (whale) running in batch mode and
being very expensive with the need to be utilized fully.

Needs:
I dynamically changing number of parallel processes:

starting with one case this leads to an exponential growth
of cases and sub-cases,

I interactive access to do crucial single steps manually or to
modify the solution strategy and continue the rest of the
computation automatically,

I varying memory requirements: mostly only 100MB - 4GB
but sometimes all that is available,

I automatic job submissions and automatic completion
check



Flexibility
Available hardware:
several clusters of the SHARCNET consortium with, for
example, 128 Itanium2 CPUs, 256 GB (silky), 384 Opteron
CPUs (bull) or 3072 CPU (whale) running in batch mode and
being very expensive with the need to be utilized fully.
Needs:

I dynamically changing number of parallel processes:
starting with one case this leads to an exponential growth
of cases and sub-cases,

I interactive access to do crucial single steps manually or to
modify the solution strategy and continue the rest of the
computation automatically,

I varying memory requirements: mostly only 100MB - 4GB
but sometimes all that is available,

I automatic job submissions and automatic completion
check



Flexibility
Available hardware:
several clusters of the SHARCNET consortium with, for
example, 128 Itanium2 CPUs, 256 GB (silky), 384 Opteron
CPUs (bull) or 3072 CPU (whale) running in batch mode and
being very expensive with the need to be utilized fully.
Needs:

I dynamically changing number of parallel processes:
starting with one case this leads to an exponential growth
of cases and sub-cases,

I interactive access to do crucial single steps manually or to
modify the solution strategy and continue the rest of the
computation automatically,

I varying memory requirements: mostly only 100MB - 4GB
but sometimes all that is available,

I automatic job submissions and automatic completion
check



Flexibility
Available hardware:
several clusters of the SHARCNET consortium with, for
example, 128 Itanium2 CPUs, 256 GB (silky), 384 Opteron
CPUs (bull) or 3072 CPU (whale) running in batch mode and
being very expensive with the need to be utilized fully.
Needs:

I dynamically changing number of parallel processes:
starting with one case this leads to an exponential growth
of cases and sub-cases,

I interactive access to do crucial single steps manually or to
modify the solution strategy and continue the rest of the
computation automatically,

I varying memory requirements: mostly only 100MB - 4GB
but sometimes all that is available,

I automatic job submissions and automatic completion
check



Flexibility
Available hardware:
several clusters of the SHARCNET consortium with, for
example, 128 Itanium2 CPUs, 256 GB (silky), 384 Opteron
CPUs (bull) or 3072 CPU (whale) running in batch mode and
being very expensive with the need to be utilized fully.
Needs:

I dynamically changing number of parallel processes:
starting with one case this leads to an exponential growth
of cases and sub-cases,

I interactive access to do crucial single steps manually or to
modify the solution strategy and continue the rest of the
computation automatically,

I varying memory requirements: mostly only 100MB - 4GB
but sometimes all that is available,

I automatic job submissions and automatic completion
check



Parallelization Techniques

I straight forward problems but with many (103..) cases:
automatical job submission utilizing the large number of
CPU, still needed: automated checking of status of
submitted jobs, automated re-start if needed

I harder problems needing occasional manual interference:
parallelization within the environment of the Unix command
screen

I very tough problems: duplication of process into another
xterm window for a risk free interactive exploration
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Algorithmic Safety

Measures to avoid or lower expressions swell:

I Several modules (e.g. reductions, substitutions) allow to
choose between fast but risky and slow but save execution.

I shortening algorithm
I time limits on any (time) risky modules, like factorization
I capture of all interactive input re-usable to restore an
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To Do

I automatic job completion control

I study how threaded parallelism (as available in REDUCE)
can be useful in solving large systems

I parallel implementation of the shortening of equations
I competitive parallelism: different methods trying in parallel

to make progress with a hard, large system
I more applications which will show new needs for

improvements on probably many fronts (safety, optimal
usage of hardware, documentation like online parallel
tutorial, ...)
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