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Abstract

A new integration technique is presented for systems of linear partial differential equations
(PDEs) for which syzygies can be formulated that obey conservation laws. These syzygies come
for free as a by-product of the differential Grobner Basis computation. Compared with the more
obvious way of integrating a single equation and substituting the result in other equations the
new technique integrates more than one equation at once and therefore introduces temporarily
fewer new functions of integration that in addition depend on fewer variables. Especially for
high order PDE systems in many variables the conventional integration technique may lead to
an explosion of the number of functions of integration which is avoided with the new method.
A further benefit is that redundant free functions in the solution are either prevented or that
their number is at least reduced.

1 A critical look at conventional integration

In this paper a new integration method is introduced that is suitable for the computerized solution
of systems of linear PDEs that admit syzygies. In the text we will call the integration of single
exact differential equations, i.e. equations which are total derivatives, the ‘conventional’ integration
method (discussed, for example, in [11]). To highlight the difference with the new syzygy based
integration method we have a closer look at the conventional method first. About notation: To
distinguish symbolic subscripts from partial derivatives we indicate partial derivatives with a comma,
for example, Oy €; = €;,5y.
To solve, for example, the system

frea (1)
0 = af,,+f (2)

for f(x,y,z) one would, at first, integrate (1) with 2 new functions of integration g(y, z), h(y, z),
then substitute
f=zg+h (3)

into (2), do a separation with respect to different powers of  to obtain the system
0 = G,y
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- gaz"—hay
0 = haz

and solve that to get the solution
f=xz(az+b) —ay +c, a,b, c = const.

The main gain of information on which the overall success was based did happen after the substi-
tution at the stage of separating (2) into 3 equations. The integration of (1) itself did not provide
new information. The equation 0 = f,,, is more compact than f = xg + h and equally well
usable in an ongoing elimination process (Grébner Basis computation). (Similarly, in this sense,
f(z) = asin(z) + bcos(x) would not provide new information compared to 0 = f” + f as sin and
cos are only defined as solutions of this ODE.) The main conclusion is: The integration of a single
equation does not necessarily imply progress in the solution of a system of PDFEs, especially if a
direct separation does not become possible as the result of substituting a computed function.
This is the case in the example

0 = fayzz (:: 61) (4)
0 = f;ww+f:z- (:: 62) (5)

discussed in more detail in the next section. Integration of (4) to f = g1(z,y) + z92(x, y) + g3(z, 2)
and substitution into (5) does not yield a separable equation and is therefore not as straight forward
to utilize as in the first example.

There is another problem with the conventional method which seems insignificant at first sight
but becomes severe for high order PDE systems in many independent variables, for example in the
application in section 9.

Substituting f = ¢1(z,y) + zg2(x,y) + g3(z, z) into (5) as done in section (2.2) and finding
the general solution for ¢, g2, g3 is, strictly speaking, a different problem from finding the general
solution for f of (4), (5)! The general solution for gi, g2, as determined in section 2.2, will involve
among other functions the two essential free functions gg(x), g7(x). From the point of view of the
original system (4), (5) these are redundant functions as they can be absorbed by g;. Redundancy
is an inherent problem of the conventional integration method which has nothing to do of how
efficient the remaining system after integration and substitution is solved. In section 6 this issue is
discussed in more detail.

With the new syzygy based integration the situation is very different. Here the decision whether
to integrate is based on syzygies, i.e. on relations between equations, like

0= (ai + Bz)el — Byafeg

in the last example and is not based on the form of a single equation. This extra information content
coming from the syzygies allows the method to perform useful integrations for systems like (4), (5)
with an instantly useful result. As will be explained further below, syzygy based integration does
not only integrate one single equation at a time, but in a sense, it performs an integration which is
compatible with all the equations involved in the syzygy. (More exactly, it integrates all equations
0 = P? at once one time where P’ are the components of the conserved current of the conservation
law of the syzygies.)

This restrictive ’compatibility constraint’ has the effect that the integral involves fewer new func-
tions of integration which furthermore depend on fewer variables. Consequently fewer new functions
have to be computed later on which shortens the computation. Also, fewer redundant functions are
generated which not only avoids the explosion of the number of intermediately generated functions



but also simplifies the final solution. These effects are especially important for high order PDEs in
many variables as explained in section 6.

The above distinctions between both integration techniques are not purely academic. Section
9.2 describes how integrations can be combined with eliminations. To apply integrations early in
the solution process is not new. This strategy has been pursued by the program CRACK for nearly
2 decades. What is interesting and new is how much more beneficial the syzygy based integration
proves to be compared with conventional integration. In section 9.2 such a comparison has been
made. One problem has been solved 3 times with a combination of different modules, including
elimination and conventional and syzygy based integration. The 3 runs differ only in the priority
of applying these modules and were compared by their running times as well as the number of
redundant functions in the final solution.

About the remainder of the paper
In section 3 the algorithm is described in general and an overview is provided.

Using the information content of syzygies in the form of conservation laws seems to be the most
direct and useful way but it is not the only one possible. In section 4 a variation of the algorithm
is explained which is based on vanishing curls of syzygies.

Different aspects of the computation of conservation laws for syzygies are the subject of the following
section.

The redundancy problem mentioned above is looked at in detail in section 6.

Even though conservation laws of syzygies might be known, it may not be advantageous to use
them if the aim is the exact solution of the original PDE-system. In section 7 examples are given.

A short description of how syzygies are recorded in section 8 is followed by section 9 introducing the
‘real-life’ application which led to the development of syzygy based integration. In three computer
runs it is shown that this integration method and elimination can be naturally combined for the
solution of linear PDE systems.

In the following section the introductory example is continued and both integration methods are
compared.

2 An introductory example

We continue the above example to explain the basic mechanism of syzygy based integration. A
more complex example is given in section 9.

2.1 Treated with the new method

In applying integrability conditions for PDEs systematically, i.e. in computing a differential Grébner
basis, identities between equations 0 = e, will result that take the form of differential expressions
with the e, as dependent variables.

We consider the simple system (4), (5), i.e.

0 = fayzz (: 61)
= fwvm"‘f;z- (: 62)

Assuming, for example, a total ordering >, of derivatives that implies 0, >, 0, and 9, >, 0., a
differential Grobner Basis computation would first eliminate f,;4,.. through cross-differentiation:

0= €2,y22 —Clrzx — fayzzz (:: 63) (6)
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then a substitution of f,,,, using e; yields
O=e3—e1,;
and a substitution of e3 using (6) provides the identity

0= €2,yz22 _(elamr +e1,, ) (7)

The choice of ordering does not matter here. Any ordering would have resulted in identity (7).

In this paper we concentrate ourselves to the integration of syzygies, like (7), which either have
the form of a divergence or can be combined linearly to give a divergence 0 = D;P* with suitable
vector components P’(e;,) that are differential expressions in the eg. Only in section 4 we outline a
variation of this principle to deal with a vanishing curl of syzygies.

The computation of conservation laws of syzygies has several aspects: how to do it in general,
why the computation of conservation laws for syzygies is a relatively simple task and how to do it
in less generality but much faster. In the interest of a compact example we postpone this discussion
to section 5.

There are different ways to write (7) as a divergence. We choose any one with as few as possible
components (here two: P?, P?). This preference is justified towards the end of this section below
equation (20). The question how conservation laws with fewer components are computed is described
in section 5 as well.

We obtain:
0 = —erut (627yz _el)w (8)
= ana: +Pzaz (9)
= (_fm:yzz )m + (fa:m:yz )7z . (10)

In the following we will use the vector P’ in two representations, first in terms of e;, in our example
from the syzygy (8):
Px = —€1,z, PZ = e?;yz —€1 (1]-)

and second the representation of P! in terms of the function f, in our example from the identity
(10):

P* = _fawyzz , P*= f;wwyz . (12)
With P satisfying the conservation law condition (9) we can write P as a 2-dim. curl
P'=-Q,.,, P"=Q. (13)

for some potential . Using for P’ the representation (12) we identify

Q:famyz-

The existence of differential expressions in unknowns, say f¢, for the potential ) is guaranteed
because all syzygies and all their consequences like 0 = D;P? are satisfied identically for any f¢. In
the appendix B an algorithm DIVINT is given that computes potentials Q¥ (f%) in general for an
arbitrary number of independent variables.

To do the next step in this example, we are reminded that expressions P’(e;) are linear homo-
geneous in the e; and that they therefore must be zero, i.e. P* = P? = (),, = @,, = 0. This means
that @ is independent of xz, z, giving @@ = ¢;(y) and the new equation

0=Q —c1= fay:—C1 (=:e4q) (14)
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with the new function of integration ¢; = ¢1(y).

Apart from the integral (14) we also get new syzygies. Having on one hand expressions for P
in terms of e;, e due to equations (11) and on the other hand P’ in terms of @,; from equations
(13) and @ in terms of e, from equation (14) we get two new identities

= P + Q)z = —€i1,¢ +e4az (15)
= P7 - an = €2,yz —€1 — €4,z - (16)

As equation e; turns up algebraically in at least one of the new identities, this equation 0 = e; is
redundant and can be dropped. Redundancy of an original equation due to integration need not
always be the case but it is the case in this example because at least one of P? and P* happens to
be algebraic in e; (in this case P?). Identity (16) has already conservation law form. Substituting
e; from identity (16) into (15) preserves this form:

0= (_64791: );x + (62;xy _64);z . (17)

This completes one syzygy based integration step. Because the new system of equations 0 = e, = ¢4
obeys the syzygy (17) which has a conservation law form with only 2 components P*, P* we can
start another integration step without having to do a differential reduction or cross differentiation
step. It turns out there are in total 3 more very similar syzygy integration steps to be performed
which are summarized in appendix A. After these 3 steps the remaining system to solve consists of
the 2 equations

0 = fam: +f7z (: 62) (18)
x3 x?
0 = fyu +€Cl — ?CQ —xz0) + 200 — TC3 — C4 (=e7) (19)

which satisfy the identity
0= —€2,y +€7,00 +€7,2 - (20)

This is a divergence too but now in three differentiation variables. With three non-vanishing P’
the condition 0 = D; P’ has the solution P* = D;Q% with more than one non-vanishing Q@ and the
condition 0 = P* = D;QV has the solution Q¥ = RY* ;. with free functions RV*(z") = RIIk(zm)
where [¥] stands for total antisymmetrization. In three dimensions this introduces one new function
R(z") = R™* through Q" = R,,, QY = R,;, and Q** = R,,. By performing a syzygy based
integration again we would solve the remaining equations (18),(19) for one function f but also
introduce one new unknown function R of all variables and therefore not make real progress. This
is demonstrated in the first example in section 7. These considerations explain why we try to find
conservation laws of syzygies with as few as possible non-zero P'.
We return to our example and decide to integrate 0 = e7 (i.e. (19)) conventionally because

e identity (20) can not be written as a divergence with only 2 terms and

e equation (19) can be integrated conventionally with respect to only one integration variable,

so we will not introduce redundant functions as discussed in the introduction and in section
6.

To y-integrate equation (19) we introduce four new functions d;(y), ..., ds(y) through ¢; = d;,, and
one new function ds = ds(z, 2z) and obtain

3 2
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with the only remaining equation (18) now taking the shape
0= d5;xx +d5;z . (22)

A single equation does not have syzygies and the method can not be applied further. What we
achieved is the integration of equation (4) and the change of equation (5) for 3 independent variables
into equation (22) for 2 variables.

2.2 The same example in a conventional treatment

For comparison, we solve the system (4), (5) again, this time in the conventional direct way. After
integrating (4) to
f:gl(x,y)+zgg(33,y)+gg(a:,2) (23)

and substitution of f the equation (5) reads

0= g1 (:EJ y)axm‘ +Z.92(x7 @/);m —|—gg(.’17, Z)Ja:a: +92(Z‘, Z/) + gg(l', Z)JZ . (24)

In equation (24) there is no function that does depend on all variables and each variable does
occur in at least one function. An algorithm for such ‘indirectly separable equations’ (ISEs) is
contained in the package CRACK (see [9] and sub-section 9.2). These equations undergo a series of
differentiations and divisions (producing a list of divisors)

e to eliminate all functions of some variable,
e to do a direct separation with respect to this variable, and

e to use the same list of divisors now in reverse order as integrating factors to back-integrate
the equations which resulted from direct separation.

In the case of equation (24) a single y-differentiation eliminates g3 and allows a direct z separation
(as g1, 92 are independent of z) giving 0 = ¢2(%,Y) .00y » 0 = 91(%, ) 2ay +92(2, y),, and through
back-integration with respect to y further

= 92(%, )0z +94(7) (25)
= 91(2, ) wa +92(2, y) + 95(2) (26)
0 = g3(2,2) 20 +93(x, 2),, —2g4(x) — g5(x) (27)

with new functions of integration g4, g5. Renaming g4 = g6(),000z, 95 = 97(%),z: and integrating
equations (25), (26) gives

g2 = —96(2) ez —2g8(y) — go(y) (28)
D= a6+ ) + S0 + 200) + 9n) - 0r(o) (29
0 = g3(%,2) e +93(7, 2),2 =296 () szwwe —97(2) 22 (30)
f= gs(z,2) + gs(2) + %398(?;) + %299(?;) +2g10(y) + 911 (y) — 97(x)
~2(96(%) ez +295(y) + 99(y))- (31)

The solution (31) is identical to (21) and the remaining condition (30) is identical to (22) if we drop
the redundant functions gg, g7 which can be absorbed by g3 and substitute gs = —d;, g9 = ds, g10 =
ds, g11 = dy, g3 = ds. A method to recognize redundancy is described in [13]. It involves the solution
of an over-determined system of equations which involves even more effort.
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The introduction of redundant functions g¢g, g; in the conventional method was unavoidable
because after reaching system (25) - (27) with the task to compute gy,. .., g5 the information was
lost that, strictly speaking, not the most general expressions for gy, ..., g5 need to be computed but
only the most general expression for f = gi(x,y) + z92(x,y) + g3(x, z). Setting gs = g7 = 0 would
be a restriction for go and g; in (28), (29) but is not a restriction for f in (31).

3 The algorithm in general

In our notation z%, ¢ = 1,...,p are the independent variables and f¢ are the unknown functions
which do not need to depend on all z'. These functions satisfy equations 0 = e,(z", f¥) where
s is a multi-index (standing, for example, for 115, i.e. 92,0,2) and where f¢ stands for a possible
dependence on f® and any partial derivatives of f®. Total derivatives appear as D;. Summation is
performed over identical indices.

The following description is summarized in the overview underneath. The number(s) at the
start of each item refer to the line number of the corresponding step in the overview.

(32),(33): For a given system of differential equations (32) the investigation of integrability condi-
tions (e.g. Grobner basis computation) yields identities (33), called syzygies. In these syzygies
the e take the role of dependent variables. The program CRACK has been used to compute
syzygies for examples presented in this paper but many other computer algebra programs
are available (for example, RIF [8], diffalg [2],[3],[4], diffgrob2 [6]) although only few generate
syzygies automatically.

(34): To find conservation laws of syzygies one either can perform a more expensive but general
search by using the package CONLAW [12] or other computer algebra software, or one can
do a more specialized, less general but faster computation as described in section 5.3. In the
conservation laws as in the syzygies the dependent variables are the e.

In order to introduce as few as possible new functions through a syzygy based integration,
one aims at conservation laws with as few as possible non-zero P’ (see discussion towards the
end of section 2.1). Possible methods to achieve this are described in section 5.2.

Most often syzygies are very simple expressions and already have a conservation law form.
Computing conservation laws is not fully algorithmic but it is argued in section 5.1 that this
task is relatively simple for under-determined systems of syzygies.

(35): If a conservation law for the syzygies is known then the following steps can definitely be
performed. The question is only whether it is beneficial for the purpose of the computation.
If one has found a conservation law with only 2 components P’ then the integration will
introduce just one new constant and will always be beneficial. If the conservation law has 3 or
more components P° then at least one new function of all variables will be introduced. In that
case, if the purpose of the integration is the solution of the PDE system (32) then one would
have to balance how many functions one can solve for due to the new integrated equations (39)
against how many new functions are introduced and possible decide not to continue. Examples
for syzygy based integrations which are useful from the point of solving PDE-systems and
others that are not are shown in section 7. If usefulness can not be decided at this stage then
the integration should be performed and decided afterwards. The computational complexity
of the integration, i.e. of the algorithm DIVINT is very low.

(36): In the computed conserved currents P‘(z,e;) we replace the equation names e; by their
expressions (32) in terms of z, f¢.



(37): The resulting P*(x, f*) in (36) are the input to the algorithm DIVINT (given in the appendix
B) to compute a special solution for the potentials Q¥ = QI¥l(x, f*) satisfying P* = D;Q¥.
Here again [ stands for anti-symmetrization. DIVINT works because the kernel of a diver-
gence D;P" is a curl D;QY with QY = —(Q?* and because 0 = D;P" is satisfied identically in
all f* and their derivatives.

(38): Because the syzygies 0 = €,,(z, e) are linear homogeneous expressions in the ey, therefore
D; P being a linear homogeneous expression in the €2, is also a linear homogeneous expression
in the e,. Hence the P! are linear homogeneous expressions in the e,. Consequently, we have
0 = P in the space of solutions of the original equations.

(39): On the other hand, the algorithm DIVINT computes expressions Q¥ satisfying P* = D;Q"%
identically and therefore 0 = D;Q% in the space of solutions of the original equations. The
general solution of this condition for the Q¥ is shown in (39) and is the result of the whole
computation. Its form depends on the number p of non-vanishing components P*: for p = 2
a single constant of integration R is introduced for p > 2 one or more functions RY*(z) are
introduced.

(40): The formal integration of 0 = D;Q" gives new equations whose right hand sides are abbre-
viated by e;;.

(41): We are instantly able to formulate syzygies which these new equations 0 = e;; satisty.

(42),(43): If any one of them can be solved for one e, (as indicated in (42)) then e,, = w can be
substituted in other syzygies and the original equation 0 = e, (x, f*) can be deleted as it is a
consequence of the equations ey, e;; in w(x, ek, ;5,5 )

(44): 1. As new syzygies have been generated in (41) there is a chance that anyone of them has
already a conservation law form, like (15).
2. The substitution of a redundant equation in step (42) may also lead to a syzygy in conser-
vation law form, either in the other newly generated syzygy or in any other syzygies.
3. Finally, there is always the possibility that the new syzygies combined with other syzygies
take a conservation law form. This would have to be found out by a computation, for example
using the program CONLAW.

Given system: 0 = ex(z, f) (32)
CRACK — Syzygies: 0= Q,(z,ex) (33)
CoNLAw —  Cons. law form: 0= D;P'(z,e), (34)
Is CL useful? If not then stop. (35)
Conserved current: P' = Pz, ex)|eysep(w,fo) = Pz, [%) (36)
DivINT — New potentials: Pi(z, f*) = D;QV with Q7 = QUl(x, ) (37)
Integration of: 0=P'=D;Q" (38)
to new integral(s): Q" (x, f*)= {R: const g g m 2 dim (39)
’ RV with RU* = RIUK(3) in >2 dim
ij ay _
New equation names: 0= { 815 Ei: ;a; _ Zijk,k } =: ¢ (40)

'When computing a differential Grobner Basis the equations in the final basis are also only differential consequences
of the initial equations and one would not want to delete them. Here the situation is different. 0 = e,, has been
integrated and can be deleted if e,;, occurs algebraically in other syzygies.



New syzygies: — 0= P'(z,e) — €ijyj (41)

Redundancies? em = w(, ek, €5, ) — (42)
— substitution of e, = w in any syzygy (43)
— deleting equation 0 = e,

return to the determination of conservation laws for syzygies (44)

The continuation of the introductory example in appendix A is itemized similar to the description
above. This allows the reader to go through an example and compare it with the overview step by
step.

4 An integration based on curls of syzygies

The described ansatz of extracting information out of syzygies in order to do integrations is not
the only possible way. In this section we want to provide a different integration method, this time
based on vanishing curls of syzygies. We will see that it is even more effective than divergence
based integration but the required structure of the system of syzygies is more special which is
the reason why it has not been implemented in CRACK. Also, the computation of conservation
laws for syzygies was implemented so far because computer programs, like CONLAW, are available
to compute conservation laws and because the existence of conservation laws is a relative weak
condition for syzygies. The method based on curls is shown in the following overview.

Given system: 0= ex(z, f)

Syzygies: 0= Q(z,ex)

Vanishing curl cond.: 0= D;P¥ with PY = Plil(z, e;),

Curl free tensor: P = P(z,e)|epser(ago) = PY(z, [)

New potentials: Pi(z, f*) = DpQY* with QVU* = QWH(z, f*)
Integration of: 0 = PY = D, Qv

R = const in 3 dim
RIM, with R = RIF(z) in >3 dim

: . _ Qijk(xvfa)_R .
New equation names: 0 = { Qi (., fo) — R, [ €ijk

New syzygies: — 0= P7(z,e4) = €ijirk

to new integral(s): QY (z, f*) :{

Redundancies? em = W(Z, ek, €5k, ) — substitution of e,
— substitution of e¢,, = w in any syzygy
— deleting equation 0 = e,
return to the determination of vanishing curls or divergences for syzygies

The superficial difference between divergence and curl based integration is that P, (), R have one
extra index for the curl based method. This method also needs at least 3 independent variables.
The following two examples involve each 4 independent variables and allow a closer comparison of
both methods.

A typical example:

For 4 unknown functions a, b, ¢,d depending on z,vy, z,t a system of 6 equations

0 = daz_cat (:: ea:y); 0 = bat_day (:: e:vz); 0 = Cay_baz (:: eazt)
0 = daa:_aat (:: eyz); 0 = Q,; —Cyg (:: eyt)a 0 = b;m_aay (:: ezt)



is given. It has syzygies

= €xy,y + €xz,2 + Extt
= —Cryx + Cyz,z + Cytt
= TCrrax — Cyry + €xtot

- _eazt,w - eyt,y - ezt,z

o O o O

which take the form of a vanishing curl: 0 = D;P¥ for P¥ = e;; leading to potentials Q"%

waz — d, Qta:y =c, szt — b, Qytz =a

and a single new free function of integration R*** = g(x,y, z,t). The resulting integrals are

a =G,z , b:gaya C=6,z, d:gat-

A related example for a conservation law syzygqy:
In comparison, the typical example using a conservation law syzygy in 4 independent variables
would involve 6 unknown functions a, b, ¢, d, f, g and 4 equations, so a less over-determined system:

0 = aytb.+cy (=€), 0 = —to+d:+fi (=€)
0 = —by—dy+g,: (=e3), 0 = —Co—Ffy—0,. (=teq).
The conservation law 0 = e1,, +€2,, +€3,, +€4,; gives P! = ¢; and potentials
OY=a, Q%=b Q%=c, Q¥=d, Q"=Ff Q"=yg.
The resulting integrals are
a=7,—=5¢, b=uUs—"Ty, Cc=8,—U,, d=ryz—w,, f[f=w,—5;, d=u,—w,

with new arbitrary functions r, s, u, w.

If both methods would be applicable, i.e. if the system of syzygies would provide a vanishing
divergence and a vanishing curl then one would prefer the curl based integration because it makes
use of more syzygies.

The last two examples look very artificial but one could exchange the unknown functions
a,b,c,... by any functionally independent expressions, each of them involving at least one different
function, and the computations and results would be unchanged.

The remainder of the paper is concerned with divergence based integration.

5 How to find conservation laws of syzygies

In order to find a combination of syzygies that is a divergence one could apply computer algebra
programs CONLAW as described in [12], [13] by regarding the syzygies as the equations and the e,
as unknown functions. In the following subsections we discuss why computing conservation laws
of syzygies is simpler than computing conservation laws in general, how one can find conservation
laws with fewer components than independent variables and how conservation laws for syzygies are
determined in CRACK.

5.1 Under-determination of syzygies

If one interprets syzygies as PDEs for unknowns e, then the original equations ey = eg(a?, f%)
are special solutions of these syzygies where the f® play the role of arbitrary functions in these
solutions. Because at least one of the f¢ depends on all variables x* (otherwise the original system
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consists only of ISEs to be treated differently, not by checking integrability conditions), the syzygies
must be an under-determined PDE-system for the unknowns e;. Computing conservation laws for
under-determined systems of PDEs is an even more over-determined problem. The conservation
law conditions have to be satisfied identically in a jet space with coordinates z", e, and all partial
derivatives of all e,. The more e, occur in the syzygies the more restrictive are their conservation
law conditions. Another way to see this is that conditions for integrating factors to give conservation
laws are obtained by applying the variational derivative (Euler-Lagrange operator) to the product
of integrating factors and syzygies (see [7]). Because there is one Euler operator for each e, we
get as many conditions as there are different e,. Finally, the more over-determined a system of
conditions is, the easier it is to solve. Therefore the subtask of computing conservation laws of
systems of syzygies is usually not a problem.

5.2 Choosing between different syzygy conservation laws

The integration of a syzygy 0 = D; P’ with two derivatives 0 = D, P® + D, PV is always useful but
not necessarily the integration of a syzygy with more than 2 derivatives because there is at least
one new function of integration of all variables (see the example in section 7). Sometimes there is
a choice allowing to write a syzygy in different forms, for example

0= €1,z +(627:1: )y +e3,,

can also be written as
0= (61 + €2,y )7:1: +es,, .

To find out whether a conservation law with fewer derivatives exists one has two options. First, one
can make an ansatz for the conservation law with fewer derivatives and solves the resulting conditions
(for example, with the programs CONLAW1 or CONLAW3). Alternatively, one computes the most
general conservation law involving arbitrary functions. If a conservation law exists which does not

contain derivatives Dij, j =m,...,p then 0 = Dj(CPj), j=1,...,m — 1 1is a conservation
law with an arbitrary function C'= C'(2™, ..., 2P). Reversely, finding a conservation law involving
an arbitrary function C(2™,...,2P) can be exploited to derive a conservation law involving no
derivatives with respect to =™, ..., aP as it is described in [10].

5.3 A faster method to find conservation laws

Methods described above decide whether a conservation law can be built from syzygies, i.e. whether
there is one in the differential ideal of the syzygies. Computations to decide this general question
are potentially much more expensive than the other steps of the syzygy based integration which are
all very quick. In the program CRACK therefore a different, less general but much faster approach
is taken. Instead of determining whether a linear combination of syzygies exists that makes up
a conservation law, the program checks each individual syzygy whether it can be written as a
divergence.

This is done by using conventional integration to integrate the syzygy with respect to the first
variable, say x to obtain P?, then integrating the remainder with respect to the second variable,
say y to obtain PY and so on. A divergence is obtained when no remainder remains after the last
variable. To find whether the syzygy can be written as a divergence with only two P! the above
integration is tried at first with all pairs of two independent variables. For example, in the case of
syzygy (7)

0= €2,yzz2 _(617:1::1: +ée1,. )
an z-integration gives P* = —e;,,. The remainder ey,,,, —e;,, can not be completely y-integrated
but z-integrated to P* = ey,,, —e;.
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6 The redundancy problem

Redundant functions are unavoidably generated as soon as an equation is conventionally integrated
with respect to at least two different variables, for example, in the integration of 0 = A,;1 .2 to
0 = A+g(z') + h(z?) where g, h depend in addition on all other independent variables occurring in
the expression A. If A contains n variables z',... 2™ then the arbitrariness of g and of h overlap
to the extend of one function of z3,...,2". In other words, if ¢ and h are computed from further
equations then there will be one redundant function of n — 2 variables in the solution of the original
problem.

Let us work out an estimate of how much redundancy is generated when integrating high order
equations. If the conventional method integrates

0= As@ym . (omymn

to

n m;—1 o
A=> > gi(")

i=1 j=0
where g¢;; are free functions of all variables apart from z' then any two functions giq, gin, a # b
have no overlap as their terms g, (%)%, gi (2%)® involve different powers of z*. Any other pairs of
functions gep, gca, @ 7# c overlap. In total there is an overlap within pairs of functions g;; equivalent
to

j=

n—1 n
> 2 mixm (45)
i=1 j=i+1

functions of n — 2 variables. In the introductory example the integration of 0 = f,,,, gave rise to
1 x 2 = 2 redundant functions of 3 — 2 = 1 variable and in the ‘real-life’ application in section 9
the integration of 0 = ¢4,p554y,ys fOr ca(t, 7,1, T2, T3, Y1, Y2, y3) generates an overlap within pairs of
functions equivalent to 2x 142 x 1+1 x 1 = 5 functions of 6 variables and for 0 = ¢4,4, 2925250551995
even an equivalent of 21 functions of 6 variables. The overlap of two functions is partially also an
overlap with other third functions and so on and should not be counted twice when trying to account
exactly for all the redundancy. But this correction concerns the arbitrariness content equivalent to
functions of less than n — 2 variables so the above formula (45) is a good initial approximation of
redundancy. Keeping in mind that typically a few hundred such integrations may be necessary, the
severity of the problem becomes obvious.
Is the redundancy problem an artifact of the chosen examples?
If one determines higher order symmetries of PDEs then the symmetry conditions may be linear
PDEs in, say, 30 independent variables (coordinates in jet space). Usually the general solution of
this overdetermined linear PDE-system involves constants (corresponding to individual symmetries)
which means that 30 conventional ‘successive layers’ of integrations would have to be done, each
‘layer’ containing integrations that express a function of n variables through functions in n — 1
variables. In total at least several hundred integrations may become necessary. From this point of
view the above mentioned application in section 9 to compute ¢4 is typical.
Could redundancy be prevented otherwise?

Partial differential equations may contain symmetries involving arbitrary functions but if not then
the general solution of the symmetry conditions contains only constants. In that case choosing a
strictly lexicographical ordering of derivatives in the elimination process the differential Grobner
basis will involve ordinary differential equations (ODEs). They may not be in the form of total
derivatives but at least in case they could be integrated, the redundancy problem would not appear
as each ODE is integrated with respect to only one independent variable. The drawback is that
Grobner Basis computations are well known to be computationally much more expensive when
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performed with a lexicographical ordering of variables than when performed using a total degree
ordering of variables. A total degree ordering will provide shorter equations of lower differential order
but with mixed derivatives, leading to redundancy with conventional integration. The conclusion is
that even in the special cases where the general solution of the linear PDE system contains essentially
only constants, the syzygy based integration is superior allowing to use elimination schemes with
total degree orderings that are more efficient than schemes using strictly lexicographical ordering
and still being able to reduce the redundancy problem.

Does syzygy based integration cure the redundancy problem completely?
In the course of one syzygy based integration all equations 0 = P° are integrated at once one time.
If 0 = P'(e;) is equivalent to the whole system 0 = ey, or, like in the introductory example (4),(5)
where successive syzygy based integration integrates the system, then redundancy is avoided. If,
on the other hand, only a subsystem of equations 0 = e is involved in 0 = P’(e;) and the result
of a syzygy based integration has to be substituted in other equations then redundancy may still
appear as recorded in table 1 in section 9.2 but to a clearly lesser extend.

Is there another way to determine redundant functions or constants in order to delete them?
In computations where each free constant in the solution of an overdetermined PDE-system corre-
sponds to a symmetry or to a conservation law one is interested to determine and drop redundancy
in order to get an accurate account of their number. For this purpose a method has been developed
(see [13]) but this requires the solution of an overdetermined PDE-system on its own and may
therefore be expensive.

7 Cases when a syzygy based integration is not useful

When applying the new integration method to solve a PDE-systrem it not only matters whether all
steps are algorithmic but also whether its execution is beneficial. Information contained in syzygies
is useful if it provides a factorization of differential operators. If they do not factorize (for example, if
they are of first order) then a syzygy based integration can still be useful if more functions are solved
for than new functions are introduced. If the divergence D;P’ contains more than two derivatives,
i.e. the conserved current P’ has more than 2 components, then the integral equations (39) contain
at least one new function RY* of all variables and we may not gain new information from the
integration if we can not solve for at least 2 functions. This is demonstrated in the following series
of 3 examples with successively more functions to be solve for and an increasing usefulness of the
integration.

Ezxample:
When computing the Grobner basis of the two equations
0 = fax +f7y (:: 61) (46)
0 = f, (=:e3) (47)

for a function f = f(x,y) (and in doing that confirming that they are already a Grdbner basis) one
will generate the identity
0= €2,z +€2;y —€1,z2 - (48)

From identifying P* = e, from (48) and the general formula P* = D,Q" + D,Q"* together with
(47) we identify Q% = 0, Q** = f, Q¥* = f. With the new function R*¥* = ¢(z,y, 2) substituted
into the formula Q¥ = RY* , the new equations are

0 = ¢, (49)
0 = f—cy, (50)
0 = f+ecy. (51)
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After a substitution of f from (50) into (51) they are identical to the original set (46), (47), only
now for a function c instead of f. No progress was made. In contrast, for the following two similar
examples the integration of syzygies is advantageous.

Ezample:
For the equations
= fax +gay (:: 61) (52)
= faz (: 62) (53)
0 = G52 (:: 63) (54)
the identity
0= €2,z +€37y —€1,2 (55)

results. Integrated in the above manner it gives

= Cy+tg (56)
= —Cy+f (57)
0 = ¢, (58)

leaving only equation (58) for ¢ = ¢(x,y, z) to be solved, an improvement compared to the original
system (52) — (54). In the next example no equations remain to be solved.

Ezxample:
For the equations
= h,y —0,z (:I 61) (59)
= faz _hm: (:: 62) (60)
0 = g2—fy (=:e3) (61)
the identity
0= €1,z +e2ay +es,, (62)
leads to
= [+cu (63)
= g+Cy (64)
0 = h+ec, (65)

with an arbitrary function ¢ = ¢(z, y, z) and no remaining equation.

In order to incorporate this method of integration into a general program for solving over-
determined systems the usefulness of integration has to be judged automatically based on the
number of derivatives in the divergence and the number of functions solved for. But also other
adjustments to the whole program have to be made. These are discussed in the following short
section.

8 Implementation
Apart from the implementation of the algorithm DIVINT as shown in the appendix B, also changes to

the package CRACK were needed in order to automate syzygy based integrations. When checking
integrability conditions in a Grobner basis computation the program had to keep track of any
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resulting identities (syzygies). This was done in the following way which is conceptually the same
as the extended Buchberger algorithm (see, for example, the books [1] and [5]).

To each equation, for example e; in (6), we will assign not only a value, like f,,..., but also,
what we will call a ‘history-value’ or short ‘history’, i.e. es,y,, —€1,42. This history of an equation
expresses one equation in terms of other equations, i.e. how it was historically computed doing the
algebraic or differential Grobner basis computation. At the beginning the history of each equation
€q 1S €, itself. Whenever a new equation is computed then not only its value but also its history is
calculated. For example, when in this example f,,,., is eliminated from equation (6) using equation
(4) then a new equation 0 = ey is generated where e, has the value 0 (as all terms cancel) and has
the history value e3 — e1,, where e3 and e; are replaced by their history values. The history of e; is
e; whereas the history of ez is €g,,,, —€1,z, giving for ey the history es,,., —€1,44 —€1,, as is shown
in (7).

In the next section a substantial application is described which is suitable to demonstrate the
advantages of the new integration method.

9 The application that led to the development of the syzygy
based integration

9.1 The problem

A problem introduced to the author by Stephen Anco concerns the computation of all conservation
laws of the radial SU(2) chiral equation in 2 spatial dimensions where the integrating factors are of
at most 2"¢ order. The equation can be written as a first order system for two 3-component vectors

j(r,t), k(r,t):

kat - j7r+j x k (66)
i = (rk),. /r. (67)

Equation (67) is already in conservation law form:
(Tj)at +(_Tk)7r =0

and the only other known conservation law (of energy) has zeroth order integrating factors:

i k=g =5 K 3 e =80, /1] = (503K 10) at (=il =0 (69

The existence conditions for conservation laws below were generated with the program CoNLAwW2
described in [12]. It generates conditions for 6 integrating factors @, ..., Qs (like the multipliers
rky, ke, ks, j1, j2, j3 on the left hand side of (68)). Each of the @; is an unknown function of 20
independent variables t,7,j,k,1 (=j,,),m (= k,, ),u (= j, ),w (= k,;r ). The system consists of
18 conditions of the form

0= Qlaul _Q47w1 r

and 6 conditions of the form

0 = Qs,, 1r” + Qaoty urr” + Qs.js 21”4+ Q3,05 2t + Q3,5 1377 + Q3,15 usr” + Q3,5 MAT” + Q3,m, W1T°
+Q3,k0 M + Q3,my War” + Q3,5 M3T” + Q3,mg w3r” + Q3,0 1> — Qo,jy k1’ — Q6. mar® + Qeoy kir
=Q6.1, m1r* = Qgty w1T° = 2Q6,uy k1 + 2Q6,u, MuT — Qgruy wiT? — Q652 kor? — Q6552 mar® + Qg kor
— Q615 M — Qg War° — 2Q6,us k2 + 2Q6,us Mot — Qgyus War” — Qosjs k3 — Qosjs mar” + Qo1 kar
—Q615 m31> — Qg1 w3 — 2Q6,u5 k3 + 2Q6,us M3 — Q6rug W3r° — Qo L — Q6.k, Joksr® + Qe,ky Jskar®
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—Q6ymy UrT® — Q6my Jomsr® — Qosmy L2ksr® + Q6ymy J3mar® + Qeym, lskar® — Qoywy Jowsr® — 2Qg,w, lamsgr®
—Q6yuy U2ks® + Qoyuwy J3w2r® + 2Q6,w, lsmar® + Qo uskar® + Qoky J1ksr® — Qosky 1o — Qoky J3kar®
+Q6ms J1m31° + Q6yms L ksr® — Qayms U2 — Qoumy J3m1r® — Qoyms l3k17° + Qosws 1wsr® + 2Q6,w, linar?
+Q6ws u1ksr® — Qosws J3w1T° — 2Q6 w5 I3 1> — Qo Usk1® — Qg 1K1 + Qe.1g G2k — Qeo.kg L3717
—=Q65ms J1M27° = Qoyms Lkar® + Q6 J2mar® + Qymy l2k1r® — Qoyms usT® — Qoyws J1war® — 2Q6,w, imar?
—Q6yws U1 k2T + Qoywy J2w1T” + 2Q6 w0, lamaT? + Qo ywy uakir® — Qoye ° — k1Qar? + kaQrr?

After introducing new unknown functions z;, y; through u; = x; + y;, w; = x; — y; the 18 short
equations took the form of a total derivative and each one could be integrated on its own but when
the computed functions were substituted only indirectly separable equations (ISEs) like (22) were
obtained.?

Despite of the initial success in performing these integrations all attempts to complete the
solution of the over-determined system failed with the 1999 version of CRACK. That this was not
simply a matter of lacking computing power became obvious after extracting a small sub-system
of equations for only one of the unknown functions® c4(t,r, z1, T9, T3, Y1, y2, y3) where some of the
equations are easy to integrate:

0

Cyzswsyays — Clsmizayriysys — Chmizayiyiys — Chaiaszsyiys — Clizazszszsyiyiys

Cdyzrwamswsrsyryays — Chsm1mamazay1y1yays — Csm1m23333y3ysys — Chrwaawszsrsyiysys

Chsarzamamayiyays — 2Chm1amazayiyays = Chrziaazawayiys — 2C4m1mamamay1ys —Chozizozazazayiys L3
Caszyzoxzzszsyiyz ©1 — Chrzizozszaysys +C47:1:2:1:3$3$3y1y3

Caseswsesyrys T1 1 Chrasasyrysys Y1 — Chrwsasysys (69)
Cosz1220373Y1Y2Y2y2 Y3 + 2647x1x2x2x2y1y2y3 _2C4=x1x2x2x3y1y2y2 +C4ax1x2x2x3x3y1yzyz T3
Cdyzywamswsy1yays Y3 + 2047w1w2w2w2w3y1y3 x3 + 2047$1$2w2w2y1y3 _2047:1:1w212w3y1y2

C4s31mom32323y1y2 T1L3 — 3647&71562563563%?/2 Zy+ 6647$1I2$2x3y1y3 L1
2

T CayzimamaT3TIY3YS3 x% t Chrzrwawszazsyiys T3
Even the solution or at least simplification of this sub-system was not possible. The problem was
not to find equations with the form of a total derivative and to integrate them. The problem was
the growing number of new functions of integration (which did still depend on 7 variables) and the
appearance of too many only indirectly separable equations (ISEs).

Since 1999 the module for handling ISEs has been improved considerably. The current version
of CRACK (Dec. 2001) can simplify the above system quickly using the conventional integration
of total derivatives. Nevertheless, by adding the ability of performing syzygy based integrations
the computation speeds up further and the solution involves fewer redundant arbitrary functions.
Tests described below show that syzygy based integrations are well suited to be performed along
the computation of a differential Grobner basis without the negative side effect of introducing too
many redundant functions. By that Grobner basis computations can be cut short and the risk of a
memory explosion be lowered.

9.2 A comparison of three computer runs

Before describing the details of 3 different computer runs, a few comments about the setup have to
be made. The package CRACK for solving and simplifying over-determined PDE-systems contains
about 30 modules for different actions to be taken either with individual equations or with groups
of equations of the system. Modules used to solve systems like (69) are

2Although each of the ISEs is over-determined on its own, this over-determination can not be utilized easily
because there is no independent variable which occurs only explicitly that would lead to direct separations.
3New constants and functions of integration are all called ¢; in CRACK with successively increasing subscript.
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1. Direct separation of an equation with respect to some variable that occurs only explicitly in
the equation.

2. Substitution of a function f either by zero or by at most 2 terms and only if other functions
occurring in these 2 terms depend on fewer variables than f.

3. Integration of an equation if it consists of a single derivative with respect to only one variable.

4. Elimination of a function f from any equation if f occurs only algebraically and linearly and if
f depends on all variables occurring in this equation. Substitution of f in all other equations.

5. Deleting of any redundant equations as described on the bottom of the overview in section 3.
6. Integration based on a syzygy in conservation law form.

7. Conventional integration of a PDE but only if sufficiently many integrations are possible such
that the integrated equation can be used for a substitution.

8. Indirect separation of an equation (ISE). (This is a complex step which can invoke other direct
separations and indirect separations of resulting equations.)

9. Reduction of the leading derivative of one equation with the help of another equation or
formulation of an integrability condition between two equations. (This is a typical step in a
Grobner basis computation.)

10. Any integration of any equation even if not complete.

These modules are called in a specific sequence which can be chosen by specifying a list of numbers,
each number representing one module. For example, if in table 1, column 2 the priority list of run
1 is chosen to be 1 234 8 9 7 10 then the modules as numbered above are tried in this order until
one module is successful and then they are again tried beginning with 1 and so on. This is only a
simplified description of the operation of CRACK but it is sufficient for the purpose of this section.

run | priority list # of | time | # of terms # of redundant functions
of actions steps | in sec | in equ. (71) | of 6 var. | of 5 var. | of 4 var. | of 3 var.
1 | 123489710 1077 | 124 6 7 16 2 0
123478910 1175 122 12 4 45 23 )
3 112345869710 | 362 23 8 2 19 2 0

Table 1. A comparison of three different runs on the system (69).

In table 1 three computer runs are compared. Column 3 gives the number of successful calls
of the modules in the priority lists. Times shown in column 4 have been measured in a session
of the computer algebra system REDUCE version 3.7 with 120 MByte memory (although only a
few MByte are needed for this computation) on a 1.7 GHz PC Pentium 4 under Linux. Column
5 gives the number of terms in the single unsolved equation which in the solution (70) below is
the equation (71). In the remaining 4 columns the number of redundant functions of 6, 5, 4, or 3
variables is shown. For example, if two functions f(z,y,z) and zg(x) occur always together such
that a substitution f + zg — f has the same effect as ¢ — 0 then g can be set to zero without loss
of generality.

17



9.3 Conclusions from the test

The central issue in these runs is, whether integrations (modules 6 and 7) are given a higher priority
than the formulation of integrability conditions (module 9) or a lower priority. If integrability
conditions have a higher priority than integrations, as in run 1, then at first a complete differential
Grobner basis is computed before integrations start. The benefit is that the differential order of
equations is as low as possible when integrations start (assuming a total degree ordering is used
in the differential Grobner basis computation). Consequently fewer integrations are necessary and
fewer functions will be generated which turn out later to be redundant. The disadvantage is that
the computation of integrability conditions may take very long and blow up the systems size, or
may even be practically impossible.

One can attempt to give integrations a higher priority at the price of more redundant functions
in the solution. This was done in run 2. The benefit may be considerable, only in our small system
(69) the Grobner basis computation is not expensive at all, so the advantage of early integrations
does not become obvious here. But the disadvantage becomes obvious. Integrating higher order
equations generates more new functions with many of them turning out to be redundant at the end.

Finally, in the third run we get the best of both previous runs. Here, early integrations use
syzygies in conservation law form as soon as they become available. The lowered differential order
of equations reduces the complexity of the remaining Grobner basis computation. Also, because
with each integration at least 2 equations 0 = P? are satisfied, the number of new functions of
integration is low and the number of variables these functions depend on is reduced. Consequently,
only few functions turn out to be redundant in the computed solution as seen in columns 6-9 of
table 1.

The following solution is obtained in run 3 after redundant functions have been deleted (by
hand) leaving 11 functions of 6 variables, 8 functions of 5 variables and 2 functions of 4 variables.
It is equivalent to the solutions returned in runs 1 and 2.

_ 1 2 2
C4 = C100yws T3Y1Y2 + 5C100523 T1Y3 T C125, T2T3Y1 + C125,y, T3Y1Y3 + C133,25 T3Y1 T C133,y, Y1Y3
+213,05 T1 F C213,95 Y1 + C100Y1Y3 — C109T2%3Y1 + C170 + Ci72 + C173%3 + 1813 + c1o1 (70)

1 2
—C192 — C193%3 — C194 + C200 + C205 — 5C65L3Y3 — C81T3 — €83
All functions depend on ¢, and in addition on further variables in the following way:

083($2,$3ay1;y2), 081(3327y17y27y3)7 0173(33175U2ay2,y3), 0172(331,332,y2,y3), 0170($1,$2,$3ay2);
6194(371,363,%,@/3), 0193(33171/1,y271/3), 6192(331,y1,y2,y3), 6191(361,373,?,/1,?,/2), 6205(33271/1,?,/2,?)'3);
0200(371,362,%,@/2), 0100(331,372,333), 0125(371,332,@/2), 6133(551,372,,02), 0181($1,$2,$3);
0213(372,333,%), 0230(361,@/17113), 0229(371,?,/1,?,/3), 6228(551,373,?,/1), 065(3627111), 0109(331,@/2)-

The function c¢j94 has to satisfy the condition

0= C194,23y1 T1 + C194,y1y3 Y1 — C194,y3 —C228 — C229 — C230T3, (71)

all other functions are free. The result of the conservation law investigation for the SU(2) chiral
equation in the form (66), (67) is that no other conservation laws with integrating factors of at most
214 order exist.

More remarks concerning the collaboration of modules:

e Syzygy based integration can not replace conventional integration. If equations become de-
coupled then no integrability conditions apply and the equations have to be integrated con-
ventionally if possible.

18



The usefulness of conventional integration relies very much on the efficiency of a module for
the indirect separation (module 8 in the above list). The corresponding implementation in
CRrACK will be described elsewhere.

The issue of avoiding redundant functions is serious when a system like (69) is only a subsystem
of a larger system and the solution of the smaller system is to be substituted in the larger one.
Redundant functions would complicate the solution of the larger system unnecessarily. On the
other hand, the identification and deletion of redundant functions using a method described
in [13], is difficult and may be more expensive than the solution/simplification of the system
itself. This method does not prevent redundancy, it only can identify it in the solution.

The package CRACK is distributed together with the computer algebra system REDUCE. A
newer version can be down-loaded from http://1lie.math.brocku.ca/twolf/crack.

10

Summary

An integration method has been proposed that is applicable for linear PDE-systems that admit
syzygies, i.e. systems which are overdetermined as a whole or contain an overdetermined subsystem.
It therefore can not replace the straight forward integration of exact PDEs but when applicable it
has a number of advantages:

The information on which the integration is based is taken from syzygies in conservation law
form. Syzygies are a by-product of the computation of differential Grobner Basis.

Because not a single equation is integrated but a number of equations (0 = P*) at once, fewer
functions of integration, depending on fewer variables are introduced in the process.

The problem of conventional integration to introduce redundant functions when integrating
with respect to different variables is either prevented or significantly reduced.

The new integration produces apart from integrated equations also new syzygies which are
often the basis for continuing the integration further without having to compute new syzygies
through a new Grobner basis computation.

Syzygy based integration, conventional integration and elimination complement one another
well in solving overdetermined linear PDE-systems if given the right priorities.
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Appendix A: Continuation of the introductory example

In this appendix we continue the introductory example by performing three more syzygy based
integration steps. The computation is broken up into items. The number(s) at the start of each
item refer to the line number of the corresponding step in the overview at the end of section 3.

(32): The remaining system to solve consists of

0= famm +f7z (: 62)

0= faxyz —Ci. (: €4

(33),(34): satistying the identity in conservation law form

0= (_6471? )796 + (62;a:y _64);z

(35): with only 2 derivatives.

(36): Proceeding as in the first integration step we now identify as the conserved current

P* = —€4y0 = _faczzczzyz = _Qaz

_— B A
P = €E2ypy —€4 — fam:a:y +c = an

(37): and as the new potential () we either identify or compute using algorithm DIVINT in appendix

B ~
Q - faa:a:y +xcy

(39),(40): giving the new equation

~

0=0Q —c2 = frouy tTC1 — C2 (=:es5)

with the new function of integration ¢y = co(y).

(41),(42): Equation e, is redundant as it turns up purely algebraically in

~ ~

_ 4 _
0="r _an—€2;xy —€4 — €5, -

(43): Substitution of ey in (72) gives the new identity

0= —€2,zxy +€5,20 €5,z -

(36): This is as well a divergence with only two terms

DT
Pt = —€2,zy +€5,0 = _famyz +cp = _Qaz

P = 65:faa:a:y+xcl_c2:an

(37): and the new potential Q
2

~ T
Q= fiay toa - v - 20
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(39),(40): giving the new equation

2
_ T
0=Q —c3=fa +301 — xCy — 20| — C3 (=:eg) (78)

with the new function of integration c3 = c3(y).

(41),(42): Now, equation es is redundant as it turns up purely algebraically in

z
0="P _Q7I:e5_667$-

(43): Substitution of e5 in (76) gives the new identity

0= —€2,zy +€6,20 €6,z - (79)

(36): This is a divergence as well and we will perform the integration cycle one more time with

= —€2,y +€6,0 = _fayz +xc; —cy = _Qaz (80)
2
. T .
P* = e = fuy +ECI —xcy — 201 — 3 = Q. (81)
(37): and the new potential Q
. x3 x?
Q=1fy —i—Ecl - 5t T aza + zcy — TC3
(39),(40): giving the new equation
. z3 x?
0=Q—ci=f,y —|—Ecl — 5t T wze + 2y — wC3 — €4 (=:e7) (82)

with the new function of integration ¢, = c4(y).

(41),(42): Now, equation eg is redundant as it turns up purely algebraically in P* in (81)

0=P° —Q,,=e€5— €1,s.
(43): Substitution of eg in (80) gives the new identity
0 = —e9,y +€7,00 +€7,; . (83)
The conclusion of this example is shown in section 2.1 below equation (20). As argued there the
syzygy based integration of equation (83) is not advantageous as (83) has a conservation law form

with 3 derivatives instead of two. Instead one rather integrates (82) with respect to y and substitutes
f in the remaining equation (5).
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Appendix B: The algorithm DIVINT

The following algorithm computes expressions Q¥ (z", f$) = QI that satisfy D;Q% = P'. The
given P' = Pi(a", f¢) are assumed to satisfy D;P' = 0 identically in all f¢.

O~ O Ot = W N =

s s B WO W W W W W W W WWNNNDNDNDDNDDDNDNDN = = e e e e e
WN R OO DDULERE WNRFRE O OO U R WNNRE O WO O U WN O

Algorithm DivINT
Input variables: z", functions: f* and conserved current: P* = P'(z", f%)
Output Q¥ (z", f¥), j >1i % satisfying D,;QY = P?,
E, F % E : list of new additional equations
% F : list of new additional functions
Body % no summation over double indices below
E:={}, F:={}, QV:=0, with 4,5€1,...,p, j>i

% Integrate all terms with functions f* depending on all variables
for i:=1to (p—1) do
for j:=i+1 topdo
while P’ contains a term a9, f¢ do % i.e. while any derivative of any f©
% occurs that involves 0;
Pt — P'— Dj(a" f%)
Pi— pi + Di(aiJf})
Qij - Qij + a“f}

% Integrate all derivatives involving functions f* not depending on all variables
for i := 2 to p do
for j:=1tot—1do
while P’ contains a term a9, f¢ do % i.e. while any derivative of any f®
% occurs that involves 0;
Pi— P — Dj(a* f%)
QP = QI — a3

% Integrate remaining terms
for : :=1 to p do
if P # 0 then
% integrate each term a*/ f¢ of P with respect to any one x7 # 2
% preferably one 27 with 9;f* = 0 in the following way:
if 9;f* = 0 then
g = f5 @ dod
P — P'— Djq
if 7 > i then QY — QY + ¢
else V" — Q" —¢q
else
Introduce a new function f#(z!, ...z~ 2t ... 2P)
F— FU{f°}
E— EU{0=20,f°—a"’f$}
P PP — g fo
if j > i then Q7 — Q" + f°
else Q' — Q' — fF#
return QY (z", f¢), E (list of new equations), F' (list of new functions)
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Explanation of the algorithm

Lines 9 - 16
This part of the procedure is sufficient if the input expressions P*(z", f¢) do only contain functions
f% depending on all p independent variables z!, ..., a?.

A typical example: If an expression PY contains a term f,, then D, PY (no summation) contains
0y f,~ which has to be cancelled by —, f,, from D, P? (no summation) to give 0 = Dy P* (summation)
identically in all f;. This means P? contains —f,,. In this short example the lines 14 - 16 would
subtract f,, from PY, subtract —f,, from P* and add f to Q¥*. There is no principal difference
between PY containing a term f,, or PY containing o'/, f¢.

As both, P’ and P’ are updated in lines 14 and 15, j does not run over indices 1...7—1. Because
Q" = 0 (QY is antisymmetric) there is no need to integrate an i-derivative in P’ and therefore j
starts from ¢ + 1 in line 11.

If all terms in all P’ contain a function f® of all variables then any term in any Q¥ occurs
twice, once with an z7-derivative in P* and once as negative z’-derivative in P/. When the program
completed lines 10 - 16, all P? have the value zero and the solution Q¥ is found (for i < j, values
for Q7* follow from the antisymmetry).

Lines 18 - 42
The only possibility that after completing lines 10 - 16 not all P* are already zero occurs if some
f% do not depend on all variables. That is, for example, the case if functions entered the problem
due to running DIVINT previously in earlier integrations. In general, if terms remain in some P*
which necessarily depend on less than all variables then one can always complete the integrations by
introducing new functions (collected in a list F' in line 38) that have to satisfy additional equations
(collected in a list E in line 39). In order to minimize the number of additional functions and
additional equations the lines 19 - 24 integrate terms that are 27-derivatives in P (j # i) and lines
31 - 35 integrate terms by changing the explicit appearance of 7. This is shown in the following
examples.

Example: Independent variables: x,y, z, initial values:

P = A(y,z2),,+B(y,2),. +C(y,2) + D(y) + G(2)

pY H(z,2),e +K(x,2),, +L(x) + M(z, z) + N(z)

P = R(z,y),,+S(x,y),y +T(x) + U(y) + W(z,y)
Qxy — Qa:z — Qyz =0

containing undetermined functions A, B,C,D,G,H, K, L, M, N, R,S,T,U and W. After complet-
ing the program up to line 18 the values are

P* = C(y,z)+ D(y) + G(2)

PY = H(x,z2),, +L(x) + M(z,2) + N(2)

P* = R(z,y)u+5(x,y)y +T(x) + Uly) + W(z,y)
Qv = Aly,2)

Q" = Bly»)

Qv K(x,z).

After completing the program up to line 26 the values are

P* = C(y,2)+ D(y) + G(2)
PY = L(z)+ M(z,z) + N(z2)
P* = T(x)+Uy) + W(z,y)
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QY = Aly,z) — H(z,2)

sz = B(y,Z)—R(iU,y)
Q" = K(z,z) = S(z,y).

The loop beginning in line 27 will integrate the remaining terms in P’. The lines 32 - 35 will
integrate the terms D, G, L, N,T,U and lines 37 - 42 the terms C, M, W to obtain

P*=P/ =P =0
Qv = A(y ) (aj z) +yG(z) —JIN(Z) +F1(y,Z)
Q™ = B(y,2) — R(z,y) +2D(y) — 2U(y) — F’(z,y)
Q¥ = K(z,2)— S(z,y) + 2L(z) — yT(z) + F*(z, 2)

with a list F' of new additional functions F'(y, z), F?(z, z), F?(z,y) and list F of new additional
equations

Fi(y,2)y = Cly,2)
F*(x,2),, = M(x,z)
F}2,9)e = Wiz, y)

each in less than 3 variables.
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