
The integration of systems of linear PDEs using onservationlaws of syzygiesThomas WolfDepartment of MathematisBrok University, 500 Glenridge Avenue,St.Catharines, Ontario, Canada L2S 3A1email: twolf�broku.aSeptember 17, 2002AbstratA new integration tehnique is presented for systems of linear partial di�erential equations(PDEs) for whih syzygies an be formulated that obey onservation laws. These syzygies omefor free as a by-produt of the di�erential Gr�obner Basis omputation. Compared with the moreobvious way of integrating a single equation and substituting the result in other equations thenew tehnique integrates more than one equation at one and therefore introdues temporarilyfewer new funtions of integration that in addition depend on fewer variables. Espeially forhigh order PDE systems in many variables the onventional integration tehnique may lead toan explosion of the number of funtions of integration whih is avoided with the new method.A further bene�t is that redundant free funtions in the solution are either prevented or thattheir number is at least redued.1 A ritial look at onventional integrationIn this paper a new integration method is introdued that is suitable for the omputerized solutionof systems of linear PDEs that admit syzygies. In the text we will all the integration of singleexat di�erential equations, i.e. equations whih are total derivatives, the `onventional' integrationmethod (disussed, for example, in [11℄). To highlight the di�erene with the new syzygy basedintegration method we have a loser look at the onventional method �rst. About notation: Todistinguish symboli subsripts from partial derivatives we indiate partial derivatives with a omma,for example, �xyei = ei;xy.To solve, for example, the system 0 = f;xx (1)0 = xf;y +f;z (2)for f(x; y; z) one would, at �rst, integrate (1) with 2 new funtions of integration g(y; z); h(y; z),then substitute f = xg + h (3)into (2), do a separation with respet to di�erent powers of x to obtain the system0 = g;y1



0 = g;z +h;y0 = h;zand solve that to get the solutionf = x(az + b)� ay + ; a; b;  = onst:The main gain of information on whih the overall suess was based did happen after the substi-tution at the stage of separating (2) into 3 equations. The integration of (1) itself did not providenew information. The equation 0 = f;xx is more ompat than f = xg + h and equally wellusable in an ongoing elimination proess (Gr�obner Basis omputation). (Similarly, in this sense,f(x) = a sin(x) + b os(x) would not provide new information ompared to 0 = f 00 + f as sin andos are only de�ned as solutions of this ODE.) The main onlusion is: The integration of a singleequation does not neessarily imply progress in the solution of a system of PDEs, espeially if adiret separation does not beome possible as the result of substituting a omputed funtion.This is the ase in the example 0 = f;yzz (=: e1) (4)0 = f;xx+f;z : (=: e2) (5)disussed in more detail in the next setion. Integration of (4) to f = g1(x; y) + zg2(x; y) + g3(x; z)and substitution into (5) does not yield a separable equation and is therefore not as straight forwardto utilize as in the �rst example.There is another problem with the onventional method whih seems insigni�ant at �rst sightbut beomes severe for high order PDE systems in many independent variables, for example in theappliation in setion 9.Substituting f = g1(x; y) + zg2(x; y) + g3(x; z) into (5) as done in setion (2.2) and �ndingthe general solution for g1; g2; g3 is, stritly speaking, a di�erent problem from �nding the generalsolution for f of (4), (5)! The general solution for g1; g2, as determined in setion 2.2, will involveamong other funtions the two essential free funtions g6(x); g7(x). From the point of view of theoriginal system (4), (5) these are redundant funtions as they an be absorbed by g3. Redundanyis an inherent problem of the onventional integration method whih has nothing to do of howeÆient the remaining system after integration and substitution is solved. In setion 6 this issue isdisussed in more detail.With the new syzygy based integration the situation is very di�erent. Here the deision whetherto integrate is based on syzygies, i.e. on relations between equations, like0 = (�2x + �z)e1 � �y�2ze2in the last example and is not based on the form of a single equation. This extra information ontentoming from the syzygies allows the method to perform useful integrations for systems like (4), (5)with an instantly useful result. As will be explained further below, syzygy based integration doesnot only integrate one single equation at a time, but in a sense, it performs an integration whih isompatible with all the equations involved in the syzygy. (More exatly, it integrates all equations0 = P i at one one time where P i are the omponents of the onserved urrent of the onservationlaw of the syzygies.)This restritive 'ompatibility onstraint' has the e�et that the integral involves fewer new fun-tions of integration whih furthermore depend on fewer variables. Consequently fewer new funtionshave to be omputed later on whih shortens the omputation. Also, fewer redundant funtions aregenerated whih not only avoids the explosion of the number of intermediately generated funtions2



but also simpli�es the �nal solution. These e�ets are espeially important for high order PDEs inmany variables as explained in setion 6.The above distintions between both integration tehniques are not purely aademi. Setion9.2 desribes how integrations an be ombined with eliminations. To apply integrations early inthe solution proess is not new. This strategy has been pursued by the program Crak for nearly2 deades. What is interesting and new is how muh more bene�ial the syzygy based integrationproves to be ompared with onventional integration. In setion 9.2 suh a omparison has beenmade. One problem has been solved 3 times with a ombination of di�erent modules, inludingelimination and onventional and syzygy based integration. The 3 runs di�er only in the priorityof applying these modules and were ompared by their running times as well as the number ofredundant funtions in the �nal solution.About the remainder of the paperIn setion 3 the algorithm is desribed in general and an overview is provided.Using the information ontent of syzygies in the form of onservation laws seems to be the mostdiret and useful way but it is not the only one possible. In setion 4 a variation of the algorithmis explained whih is based on vanishing urls of syzygies.Di�erent aspets of the omputation of onservation laws for syzygies are the subjet of the followingsetion.The redundany problem mentioned above is looked at in detail in setion 6.Even though onservation laws of syzygies might be known, it may not be advantageous to usethem if the aim is the exat solution of the original PDE-system. In setion 7 examples are given.A short desription of how syzygies are reorded in setion 8 is followed by setion 9 introduing the`real-life' appliation whih led to the development of syzygy based integration. In three omputerruns it is shown that this integration method and elimination an be naturally ombined for thesolution of linear PDE systems.In the following setion the introdutory example is ontinued and both integration methods areompared.2 An introdutory exampleWe ontinue the above example to explain the basi mehanism of syzygy based integration. Amore omplex example is given in setion 9.2.1 Treated with the new methodIn applying integrability onditions for PDEs systematially, i.e. in omputing a di�erential Gr�obnerbasis, identities between equations 0 = ea will result that take the form of di�erential expressionswith the ea as dependent variables.We onsider the simple system (4), (5), i.e.0 = f;yzz (= e1)0 = f;xx+f;z : (= e2)Assuming, for example, a total ordering >o of derivatives that implies �x >o �z and �y >o �z, adi�erential Gr�obner Basis omputation would �rst eliminate f;xxyzz through ross-di�erentiation:0 = e2;yzz �e1;xx= f;yzzz (=: e3) (6)3



then a substitution of f;yzz using e1 yields 0 = e3 � e1;zand a substitution of e3 using (6) provides the identity0 = e2;yzz�(e1;xx+e1;z ): (7)The hoie of ordering does not matter here. Any ordering would have resulted in identity (7).In this paper we onentrate ourselves to the integration of syzygies, like (7), whih either havethe form of a divergene or an be ombined linearly to give a divergene 0 = DiP i with suitablevetor omponents P i(ek) that are di�erential expressions in the ek. Only in setion 4 we outline avariation of this priniple to deal with a vanishing url of syzygies.The omputation of onservation laws of syzygies has several aspets: how to do it in general,why the omputation of onservation laws for syzygies is a relatively simple task and how to do itin less generality but muh faster. In the interest of a ompat example we postpone this disussionto setion 5.There are di�erent ways to write (7) as a divergene. We hoose any one with as few as possibleomponents (here two: P x; P z). This preferene is justi�ed towards the end of this setion belowequation (20). The question how onservation laws with fewer omponents are omputed is desribedin setion 5 as well.We obtain: 0 = �e1;xx+(e2;yz �e1);z (8)= P x;x+P z;z (9)= (�f;xyzz );x+(f;xxyz );z : (10)In the following we will use the vetor P i in two representations, �rst in terms of ei, in our examplefrom the syzygy (8): P x = �e1;x ; P z = e2;yz �e1 (11)and seond the representation of P i in terms of the funtion f , in our example from the identity(10): P x = �f;xyzz ; P z = f;xxyz : (12)With P satisfying the onservation law ondition (9) we an write P as a 2-dim. urlP x = �Q;z ; P z = Q;x (13)for some potential Q. Using for P i the representation (12) we identifyQ = f;xyz :The existene of di�erential expressions in unknowns, say f�, for the potential Q is guaranteedbeause all syzygies and all their onsequenes like 0 = DiP i are satis�ed identially for any f�. Inthe appendix B an algorithm DivInt is given that omputes potentials Qij(f�) in general for anarbitrary number of independent variables.To do the next step in this example, we are reminded that expressions P i(ej) are linear homo-geneous in the ej and that they therefore must be zero, i.e. P x = P z = Q;x= Q;z = 0. This meansthat Q is independent of x; z, giving Q = 1(y) and the new equation0 = Q� 1 = f;xyz �1 (=: e4) (14)4



with the new funtion of integration 1 = 1(y).Apart from the integral (14) we also get new syzygies. Having on one hand expressions for P iin terms of e1; e2 due to equations (11) and on the other hand P i in terms of Q;j from equations(13) and Q in terms of e4 from equation (14) we get two new identities0 = P x +Q;z = �e1;x+e4;z (15)0 = P z �Q;x= e2;yz �e1 � e4;x : (16)As equation e1 turns up algebraially in at least one of the new identities, this equation 0 = e1 isredundant and an be dropped. Redundany of an original equation due to integration need notalways be the ase but it is the ase in this example beause at least one of P x and P z happens tobe algebrai in e1 (in this ase P z). Identity (16) has already onservation law form. Substitutinge1 from identity (16) into (15) preserves this form:0 = (�e4;x );x +(e2;xy�e4);z : (17)This ompletes one syzygy based integration step. Beause the new system of equations 0 = e2 = e4obeys the syzygy (17) whih has a onservation law form with only 2 omponents P x; P z we anstart another integration step without having to do a di�erential redution or ross di�erentiationstep. It turns out there are in total 3 more very similar syzygy integration steps to be performedwhih are summarized in appendix A. After these 3 steps the remaining system to solve onsists ofthe 2 equations 0 = f;xx+f;z (= e2) (18)0 = f;y +x36 1 � x22 2 � xz1 + z2 � x3 � 4 (= e7) (19)whih satisfy the identity 0 = �e2;y +e7;xx+e7;z : (20)This is a divergene too but now in three di�erentiation variables. With three non-vanishing P ithe ondition 0 = DiP i has the solution P i = DjQij with more than one non-vanishing Qij and theondition 0 = P i = DjQij has the solution Qij = Rijk;k with free funtions Rijk(xn) = R[ijk℄(xn)where [ijk℄ stands for total antisymmetrization. In three dimensions this introdues one new funtionR(xn) = Rxyz through Qxy = R;z ; Qyz = R;x ; and Qzx = R;y. By performing a syzygy basedintegration again we would solve the remaining equations (18),(19) for one funtion f but alsointrodue one new unknown funtion R of all variables and therefore not make real progress. Thisis demonstrated in the �rst example in setion 7. These onsiderations explain why we try to �ndonservation laws of syzygies with as few as possible non-zero P i.We return to our example and deide to integrate 0 = e7 (i.e. (19)) onventionally beause� identity (20) an not be written as a divergene with only 2 terms and� equation (19) an be integrated onventionally with respet to only one integration variable,so we will not introdue redundant funtions as disussed in the introdution and in setion6.To y-integrate equation (19) we introdue four new funtions d1(y); : : : ; d4(y) through i = di;y andone new funtion d5 = d5(x; z) and obtainf = �x36 d1 + x22 d2 + xzd1 � zd2 + xd3 + d4 + d5 (21)5



with the only remaining equation (18) now taking the shape0 = d5;xx+d5;z : (22)A single equation does not have syzygies and the method an not be applied further. What weahieved is the integration of equation (4) and the hange of equation (5) for 3 independent variablesinto equation (22) for 2 variables.2.2 The same example in a onventional treatmentFor omparison, we solve the system (4), (5) again, this time in the onventional diret way. Afterintegrating (4) to f = g1(x; y) + zg2(x; y) + g3(x; z) (23)and substitution of f the equation (5) reads0 = g1(x; y);xx+zg2(x; y);xx+g3(x; z);xx+g2(x; y) + g3(x; z);z : (24)In equation (24) there is no funtion that does depend on all variables and eah variable doesour in at least one funtion. An algorithm for suh `indiretly separable equations' (ISEs) isontained in the pakage Crak (see [9℄ and sub-setion 9.2). These equations undergo a series ofdi�erentiations and divisions (produing a list of divisors)� to eliminate all funtions of some variable,� to do a diret separation with respet to this variable, and� to use the same list of divisors now in reverse order as integrating fators to bak-integratethe equations whih resulted from diret separation.In the ase of equation (24) a single y-di�erentiation eliminates g3 and allows a diret z separation(as g1; g2 are independent of z) giving 0 = g2(x; y);xxy ; 0 = g1(x; y);xxy+g2(x; y);y and throughbak-integration with respet to y further0 = g2(x; y);xx+g4(x) (25)0 = g1(x; y);xx+g2(x; y) + g5(x) (26)0 = g3(x; z);xx+g3(x; z);z �zg4(x)� g5(x) (27)with new funtions of integration g4; g5. Renaming g4 = g6(x);xxxx ; g5 = g7(x);xx and integratingequations (25), (26) givesg2 = �g6(x);xx�xg8(y)� g9(y) (28)g1 = g6(x) + x36 g8(y) + x22 g9(y) + xg10(y) + g11(y)� g7(x) (29)0 = g3(x; z);xx+g3(x; z);z �zg6(x);xxxx�g7(x);xx (30)f = g3(x; z) + g6(x) + x36 g8(y) + x22 g9(y) + xg10(y) + g11(y)� g7(x)�z(g6(x);xx+xg8(y) + g9(y)): (31)The solution (31) is idential to (21) and the remaining ondition (30) is idential to (22) if we dropthe redundant funtions g6; g7 whih an be absorbed by g3 and substitute g8 = �d1; g9 = d2; g10 =d3; g11 = d4; g3 = d5. A method to reognize redundany is desribed in [13℄. It involves the solutionof an over-determined system of equations whih involves even more e�ort.6



The introdution of redundant funtions g6; g7 in the onventional method was unavoidablebeause after reahing system (25) - (27) with the task to ompute g1; : : : ; g5 the information waslost that, stritly speaking, not the most general expressions for g1; : : : ; g5 need to be omputed butonly the most general expression for f = g1(x; y) + zg2(x; y) + g3(x; z). Setting g6 = g7 = 0 wouldbe a restrition for g2 and g1 in (28), (29) but is not a restrition for f in (31).3 The algorithm in generalIn our notation xi; i = 1; : : : ; p are the independent variables and f� are the unknown funtionswhih do not need to depend on all xi. These funtions satisfy equations 0 = ea(xn; f�J ) whereJ is a multi-index (standing, for example, for 112, i.e. �2x1�x2) and where f�J stands for a possibledependene on f� and any partial derivatives of f�. Total derivatives appear as Di. Summation isperformed over idential indies.The following desription is summarized in the overview underneath. The number(s) at thestart of eah item refer to the line number of the orresponding step in the overview.(32),(33): For a given system of di�erential equations (32) the investigation of integrability ondi-tions (e.g. Gr�obner basis omputation) yields identities (33), alled syzygies. In these syzygiesthe ek take the role of dependent variables. The program Crak has been used to omputesyzygies for examples presented in this paper but many other omputer algebra programsare available (for example, RIF [8℄, di�alg [2℄,[3℄,[4℄, di�grob2 [6℄) although only few generatesyzygies automatially.(34): To �nd onservation laws of syzygies one either an perform a more expensive but generalsearh by using the pakage ConLaw [12℄ or other omputer algebra software, or one ando a more speialized, less general but faster omputation as desribed in setion 5.3. In theonservation laws as in the syzygies the dependent variables are the ek.In order to introdue as few as possible new funtions through a syzygy based integration,one aims at onservation laws with as few as possible non-zero P i (see disussion towards theend of setion 2.1). Possible methods to ahieve this are desribed in setion 5.2.Most often syzygies are very simple expressions and already have a onservation law form.Computing onservation laws is not fully algorithmi but it is argued in setion 5.1 that thistask is relatively simple for under-determined systems of syzygies.(35): If a onservation law for the syzygies is known then the following steps an de�nitely beperformed. The question is only whether it is bene�ial for the purpose of the omputation.If one has found a onservation law with only 2 omponents P i then the integration willintrodue just one new onstant and will always be bene�ial. If the onservation law has 3 ormore omponents P i then at least one new funtion of all variables will be introdued. In thatase, if the purpose of the integration is the solution of the PDE system (32) then one wouldhave to balane how many funtions one an solve for due to the new integrated equations (39)against how many new funtions are introdued and possible deide not to ontinue. Examplesfor syzygy based integrations whih are useful from the point of solving PDE-systems andothers that are not are shown in setion 7. If usefulness an not be deided at this stage thenthe integration should be performed and deided afterwards. The omputational omplexityof the integration, i.e. of the algorithm DivInt is very low.(36): In the omputed onserved urrents P i(x; ek) we replae the equation names ek by theirexpressions (32) in terms of x; f�. 7



(37): The resulting P i(x; f�) in (36) are the input to the algorithm DivInt (given in the appendixB) to ompute a speial solution for the potentials Qij = Q[ij℄(x; f�) satisfying P i = DjQij.Here again [ij℄ stands for anti-symmetrization. DivInt works beause the kernel of a diver-gene DiP i is a url DjQij with Qij = �Qji and beause 0 = DiP i is satis�ed identially inall f� and their derivatives.(38): Beause the syzygies 0 = 
m(x; ek) are linear homogeneous expressions in the ek, thereforeDiP i being a linear homogeneous expression in the 
m is also a linear homogeneous expressionin the ek. Hene the P i are linear homogeneous expressions in the ea. Consequently, we have0 = P i in the spae of solutions of the original equations.1(39): On the other hand, the algorithm DivInt omputes expressions Qij satisfying P i = DjQijidentially and therefore 0 = DjQij in the spae of solutions of the original equations. Thegeneral solution of this ondition for the Qij is shown in (39) and is the result of the wholeomputation. Its form depends on the number p of non-vanishing omponents P i: for p = 2a single onstant of integration R is introdued for p > 2 one or more funtions Rijk(x) areintrodued.(40): The formal integration of 0 = DjQij gives new equations whose right hand sides are abbre-viated by eij.(41): We are instantly able to formulate syzygies whih these new equations 0 = eij satisfy.(42),(43): If any one of them an be solved for one em (as indiated in (42)) then em = ! an besubstituted in other syzygies and the original equation 0 = em(x; f�) an be deleted as it is aonsequene of the equations ek; eij in !(x; ek; eij;j ).(44): 1. As new syzygies have been generated in (41) there is a hane that anyone of them hasalready a onservation law form, like (15).2. The substitution of a redundant equation in step (42) may also lead to a syzygy in onser-vation law form, either in the other newly generated syzygy or in any other syzygies.3. Finally, there is always the possibility that the new syzygies ombined with other syzygiestake a onservation law form. This would have to be found out by a omputation, for exampleusing the program ConLaw.Given system: 0 = ek(x; f�) (32)Crak ! Syzygies: 0 = 
m(x; ek) (33)ConLaw! Cons. law form: 0 = DiP i(x; ek); (34)Is CL useful? If not then stop. (35)Conserved urrent: P i = P i(x; ek)jek!ek(x;f�) = P i(x; f�) (36)DivInt ! New potentials: P i(x; f�) = DjQij with Qij = Q[ij℄(x; f�) (37)Integration of: 0 = P i = DjQij (38)to new integral(s): Qij(x; f�)=(R = onst in 2 dimRijk;k with Rijk=R[ijk℄(x) in >2 dim (39)New equation names: 0 = ( Qij(x; f�)� RQij(x; f�)� Rijk;k ) =: eij (40)1When omputing a di�erential Gr�obner Basis the equations in the �nal basis are also only di�erential onsequenesof the initial equations and one would not want to delete them. Here the situation is di�erent. 0 = em has beenintegrated and an be deleted if em ours algebraially in other syzygies.8



New syzygies: ! 0 = P i(x; ek)� eij;j (41)Redundanies? em = !(x; ek; eij;j )! (42)� substitution of em = ! in any syzygy (43)� deleting equation 0 = emreturn to the determination of onservation laws for syzygies (44)The ontinuation of the introdutory example in appendix A is itemized similar to the desriptionabove. This allows the reader to go through an example and ompare it with the overview step bystep.4 An integration based on urls of syzygiesThe desribed ansatz of extrating information out of syzygies in order to do integrations is notthe only possible way. In this setion we want to provide a di�erent integration method, this timebased on vanishing urls of syzygies. We will see that it is even more e�etive than divergenebased integration but the required struture of the system of syzygies is more speial whih isthe reason why it has not been implemented in Crak. Also, the omputation of onservationlaws for syzygies was implemented so far beause omputer programs, like ConLaw, are availableto ompute onservation laws and beause the existene of onservation laws is a relative weakondition for syzygies. The method based on urls is shown in the following overview.Given system: 0 = ek(x; f�)Syzygies: 0 = 
m(x; ek)Vanishing url ond.: 0 = DjP ij with P ij = P [ij℄(x; ek);Curl free tensor: P ij = P ij(x; ek)jek!ek(x;f�) = P ij(x; f�)New potentials: P ij(x; f�) = DkQijk with Qijk = Q[ijk℄(x; f�)Integration of: 0 = P ij = DkQijkto new integral(s): Qijk(x; f�)=(R = onst in 3 dimRijkl;l with Rijkl=R[ijkl℄(x) in >3 dimNew equation names: 0 = ( Qijk(x; f�)� RQijk(x; f�)� Rijkl;l ) =: eijkNew syzygies: ! 0 = P ij(x; ea)� eijk;kRedundanies? em = !(x; ek; eijk;k )! substitution of em� substitution of em = ! in any syzygy� deleting equation 0 = emreturn to the determination of vanishing urls or divergenes for syzygiesThe super�ial di�erene between divergene and url based integration is that P;Q;R have oneextra index for the url based method. This method also needs at least 3 independent variables.The following two examples involve eah 4 independent variables and allow a loser omparison ofboth methods.A typial example:For 4 unknown funtions a; b; ; d depending on x; y; z; t a system of 6 equations0 = d;z�;t (=: exy) ; 0 = b;t�d;y (=: exz) ; 0 = ;y �b;z (=: ext)0 = d;x�a;t (=: eyz) ; 0 = a;z �;x (=: eyt) ; 0 = b;x�a;y (=: ezt)9



is given. It has syzygies 0 = exy;y + exz;z + ext;t0 = �exy;x + eyz;z + eyt;t0 = �exz;x � eyz;y + ezt;t0 = �ext;x � eyt;y � ezt;zwhih take the form of a vanishing url: 0 = DjP ij for P ij = eij leading to potentials QijkQxyz = d; Qtxy = ; Qxzt = b; Qytz = aand a single new free funtion of integration Rxyzt = g(x; y; z; t). The resulting integrals area = g;x ; b = g;y ;  = g;z ; d = g;t :A related example for a onservation law syzygy:In omparison, the typial example using a onservation law syzygy in 4 independent variableswould involve 6 unknown funtions a; b; ; d; f; g and 4 equations, so a less over-determined system:0 = a;y +b;z +;t (=: e1) ; 0 = �a;x+d;z +f;t (=: e2)0 = �b;x�d;y +g;t (=: e3) ; 0 = �;x�f;y �g;z (=: e4):The onservation law 0 = e1;x+e2;y +e3;z +e4;t gives P i = ei and potentialsQxy = a; Qxz = b; Qxt = ; Qyz = d; Qyt = f; Qzt = g:The resulting integrals area = r;z�s;t ; b = u;t�r;y ;  = s;y�u;z ; d = r;x�w;t ; f = w;z�s;x ; d = u;x�w;ywith new arbitrary funtions r; s; u; w.If both methods would be appliable, i.e. if the system of syzygies would provide a vanishingdivergene and a vanishing url then one would prefer the url based integration beause it makesuse of more syzygies.The last two examples look very arti�ial but one ould exhange the unknown funtionsa; b; ; : : : by any funtionally independent expressions, eah of them involving at least one di�erentfuntion, and the omputations and results would be unhanged.The remainder of the paper is onerned with divergene based integration.5 How to �nd onservation laws of syzygiesIn order to �nd a ombination of syzygies that is a divergene one ould apply omputer algebraprograms ConLaw as desribed in [12℄, [13℄ by regarding the syzygies as the equations and the eaas unknown funtions. In the following subsetions we disuss why omputing onservation lawsof syzygies is simpler than omputing onservation laws in general, how one an �nd onservationlaws with fewer omponents than independent variables and how onservation laws for syzygies aredetermined in Crak.5.1 Under-determination of syzygiesIf one interprets syzygies as PDEs for unknowns ek, then the original equations ek = ek(xi; f�J )are speial solutions of these syzygies where the f� play the role of arbitrary funtions in thesesolutions. Beause at least one of the f� depends on all variables xi (otherwise the original system10



onsists only of ISEs to be treated di�erently, not by heking integrability onditions), the syzygiesmust be an under-determined PDE-system for the unknowns ek. Computing onservation laws forunder-determined systems of PDEs is an even more over-determined problem. The onservationlaw onditions have to be satis�ed identially in a jet spae with oordinates xn; ea and all partialderivatives of all ea. The more ea our in the syzygies the more restritive are their onservationlaw onditions. Another way to see this is that onditions for integrating fators to give onservationlaws are obtained by applying the variational derivative (Euler-Lagrange operator) to the produtof integrating fators and syzygies (see [7℄). Beause there is one Euler operator for eah ea weget as many onditions as there are di�erent ea. Finally, the more over-determined a system ofonditions is, the easier it is to solve. Therefore the subtask of omputing onservation laws ofsystems of syzygies is usually not a problem.5.2 Choosing between di�erent syzygy onservation lawsThe integration of a syzygy 0 = DiP i with two derivatives 0 = DxP x +DyP y is always useful butnot neessarily the integration of a syzygy with more than 2 derivatives beause there is at leastone new funtion of integration of all variables (see the example in setion 7). Sometimes there isa hoie allowing to write a syzygy in di�erent forms, for example0 = e1;x+(e2;x )y + e3;zan also be written as 0 = (e1 + e2;y );x+e3;z :To �nd out whether a onservation law with fewer derivatives exists one has two options. First, onean make an ansatz for the onservation law with fewer derivatives and solves the resulting onditions(for example, with the programs ConLaw1 or ConLaw3). Alternatively, one omputes the mostgeneral onservation law involving arbitrary funtions. If a onservation law exists whih does notontain derivatives DjP j; j = m; : : : ; p then 0 = Dj(CP j); j = 1; : : : ; m � 1 is a onservationlaw with an arbitrary funtion C = C(xm; : : : ; xp). Reversely, �nding a onservation law involvingan arbitrary funtion C(xm; : : : ; xp) an be exploited to derive a onservation law involving noderivatives with respet to xm; : : : ; xp as it is desribed in [10℄.5.3 A faster method to �nd onservation lawsMethods desribed above deide whether a onservation law an be built from syzygies, i.e. whetherthere is one in the di�erential ideal of the syzygies. Computations to deide this general questionare potentially muh more expensive than the other steps of the syzygy based integration whih areall very quik. In the program CRACK therefore a di�erent, less general but muh faster approahis taken. Instead of determining whether a linear ombination of syzygies exists that makes upa onservation law, the program heks eah individual syzygy whether it an be written as adivergene.This is done by using onventional integration to integrate the syzygy with respet to the �rstvariable, say x to obtain P x, then integrating the remainder with respet to the seond variable,say y to obtain P y and so on. A divergene is obtained when no remainder remains after the lastvariable. To �nd whether the syzygy an be written as a divergene with only two P i the aboveintegration is tried at �rst with all pairs of two independent variables. For example, in the ase ofsyzygy (7) 0 = e2;yzz �(e1;xx+e1;z )an x-integration gives P x = �e1;x. The remainder e2;yzz�e1;z an not be ompletely y-integratedbut z-integrated to P z = e2;yz �e1. 11



6 The redundany problemRedundant funtions are unavoidably generated as soon as an equation is onventionally integratedwith respet to at least two di�erent variables, for example, in the integration of 0 = A;x1;x2 to0 = A+ g(x1)+h(x2) where g; h depend in addition on all other independent variables ourring inthe expression A. If A ontains n variables x1; : : : ; xn then the arbitrariness of g and of h overlapto the extend of one funtion of x3; : : : ; xn. In other words, if g and h are omputed from furtherequations then there will be one redundant funtion of n�2 variables in the solution of the originalproblem.Let us work out an estimate of how muh redundany is generated when integrating high orderequations. If the onventional method integrates0 = A;(x1)m1 ;:::;(xn)mnto A = nXi=1 mi�1Xj=0 gij (xi) jwhere gij are free funtions of all variables apart from xi then any two funtions gia; gib; a 6= bhave no overlap as their terms gia (xi)a; gib (xi)b involve di�erent powers of xi. Any other pairs offuntions gab; gd; a 6=  overlap. In total there is an overlap within pairs of funtions gij equivalentto n�1Xi=1 nXj=i+1mi �mj (45)funtions of n � 2 variables. In the introdutory example the integration of 0 = f;yzz gave rise to1 � 2 = 2 redundant funtions of 3 � 2 = 1 variable and in the `real-life' appliation in setion 9the integration of 0 = 4;x3x3y2y3 for 4(t; r; x1; x2; x3; y1; y2; y3) generates an overlap within pairs offuntions equivalent to 2�1+2�1+1�1 = 5 funtions of 6 variables and for 0 = 4;x1x2x3x3x3y1y2y2even an equivalent of 21 funtions of 6 variables. The overlap of two funtions is partially also anoverlap with other third funtions and so on and should not be ounted twie when trying to aountexatly for all the redundany. But this orretion onerns the arbitrariness ontent equivalent tofuntions of less than n � 2 variables so the above formula (45) is a good initial approximation ofredundany. Keeping in mind that typially a few hundred suh integrations may be neessary, theseverity of the problem beomes obvious.Is the redundany problem an artifat of the hosen examples?If one determines higher order symmetries of PDEs then the symmetry onditions may be linearPDEs in, say, 30 independent variables (oordinates in jet spae). Usually the general solution ofthis overdetermined linear PDE-system involves onstants (orresponding to individual symmetries)whih means that 30 onventional `suessive layers' of integrations would have to be done, eah`layer' ontaining integrations that express a funtion of n variables through funtions in n � 1variables. In total at least several hundred integrations may beome neessary. From this point ofview the above mentioned appliation in setion 9 to ompute 4 is typial.Could redundany be prevented otherwise?Partial di�erential equations may ontain symmetries involving arbitrary funtions but if not thenthe general solution of the symmetry onditions ontains only onstants. In that ase hoosing astritly lexiographial ordering of derivatives in the elimination proess the di�erential Gr�obnerbasis will involve ordinary di�erential equations (ODEs). They may not be in the form of totalderivatives but at least in ase they ould be integrated, the redundany problem would not appearas eah ODE is integrated with respet to only one independent variable. The drawbak is thatGr�obner Basis omputations are well known to be omputationally muh more expensive when12



performed with a lexiographial ordering of variables than when performed using a total degreeordering of variables. A total degree ordering will provide shorter equations of lower di�erential orderbut with mixed derivatives, leading to redundany with onventional integration. The onlusion isthat even in the speial ases where the general solution of the linear PDE system ontains essentiallyonly onstants, the syzygy based integration is superior allowing to use elimination shemes withtotal degree orderings that are more eÆient than shemes using stritly lexiographial orderingand still being able to redue the redundany problem.Does syzygy based integration ure the redundany problem ompletely?In the ourse of one syzygy based integration all equations 0 = P i are integrated at one one time.If 0 = P i(ej) is equivalent to the whole system 0 = ek, or, like in the introdutory example (4),(5)where suessive syzygy based integration integrates the system, then redundany is avoided. If,on the other hand, only a subsystem of equations 0 = ek is involved in 0 = P i(ej) and the resultof a syzygy based integration has to be substituted in other equations then redundany may stillappear as reorded in table 1 in setion 9.2 but to a learly lesser extend.Is there another way to determine redundant funtions or onstants in order to delete them?In omputations where eah free onstant in the solution of an overdetermined PDE-system orre-sponds to a symmetry or to a onservation law one is interested to determine and drop redundanyin order to get an aurate aount of their number. For this purpose a method has been developed(see [13℄) but this requires the solution of an overdetermined PDE-system on its own and maytherefore be expensive.7 Cases when a syzygy based integration is not usefulWhen applying the new integration method to solve a PDE-systrem it not only matters whether allsteps are algorithmi but also whether its exeution is bene�ial. Information ontained in syzygiesis useful if it provides a fatorization of di�erential operators. If they do not fatorize (for example, ifthey are of �rst order) then a syzygy based integration an still be useful if more funtions are solvedfor than new funtions are introdued. If the divergene DiP i ontains more than two derivatives,i.e. the onserved urrent P i has more than 2 omponents, then the integral equations (39) ontainat least one new funtion Rijk of all variables and we may not gain new information from theintegration if we an not solve for at least 2 funtions. This is demonstrated in the following seriesof 3 examples with suessively more funtions to be solve for and an inreasing usefulness of theintegration.Example:When omputing the Gr�obner basis of the two equations0 = f;x+f;y (=: e1) (46)0 = f;z (=: e2) (47)for a funtion f = f(x; y) (and in doing that on�rming that they are already a Gr�obner basis) onewill generate the identity 0 = e2;x+e2;y �e1;z : (48)From identifying P x = e2 from (48) and the general formula P x = DyQxy + DzQxz together with(47) we identify Qxy = 0; Qxz = f; Qyz = f . With the new funtion Rxyz = (x; y; z) substitutedinto the formula Qij = Rijk;k the new equations are0 = ;z (49)0 = f � ;x (50)0 = f + ;y : (51)13



After a substitution of f from (50) into (51) they are idential to the original set (46), (47), onlynow for a funtion  instead of f . No progress was made. In ontrast, for the following two similarexamples the integration of syzygies is advantageous.Example:For the equations 0 = f;x+g;y (=: e1) (52)0 = f;z (=: e2) (53)0 = g;z (=: e3) (54)the identity 0 = e2;x+e3;y�e1;z (55)results. Integrated in the above manner it gives0 = ;x+g (56)0 = �;y +f (57)0 = ;z (58)leaving only equation (58) for  = (x; y; z) to be solved, an improvement ompared to the originalsystem (52) { (54). In the next example no equations remain to be solved.Example:For the equations 0 = h;y�g;z (=: e1) (59)0 = f;z �h;x (=: e2) (60)0 = g;x�f;y (=: e3) (61)the identity 0 = e1;x+e2;y +e3;z (62)leads to 0 = f + ;x (63)0 = g + ;y (64)0 = h+ ;z (65)with an arbitrary funtion  = (x; y; z) and no remaining equation.In order to inorporate this method of integration into a general program for solving over-determined systems the usefulness of integration has to be judged automatially based on thenumber of derivatives in the divergene and the number of funtions solved for. But also otheradjustments to the whole program have to be made. These are disussed in the following shortsetion.8 ImplementationApart from the implementation of the algorithmDivInt as shown in the appendix B, also hanges tothe pakage Crak were needed in order to automate syzygy based integrations. When hekingintegrability onditions in a Gr�obner basis omputation the program had to keep trak of any14



resulting identities (syzygies). This was done in the following way whih is oneptually the sameas the extended Buhberger algorithm (see, for example, the books [1℄ and [5℄).To eah equation, for example e3 in (6), we will assign not only a value, like f;yzzz, but also,what we will all a `history-value' or short `history', i.e. e2;yzz�e1;xx. This history of an equationexpresses one equation in terms of other equations, i.e. how it was historially omputed doing thealgebrai or di�erential Gr�obner basis omputation. At the beginning the history of eah equationea is ea itself. Whenever a new equation is omputed then not only its value but also its history isalulated. For example, when in this example f;yzzz is eliminated from equation (6) using equation(4) then a new equation 0 = e4 is generated where e4 has the value 0 (as all terms anel) and hasthe history value e3 � e1;z where e3 and e1 are replaed by their history values. The history of e1 ise1 whereas the history of e3 is e2;yzz�e1;xx giving for e4 the history e2;yzz �e1;xx�e1;z as is shownin (7).In the next setion a substantial appliation is desribed whih is suitable to demonstrate theadvantages of the new integration method.9 The appliation that led to the development of the syzygybased integration9.1 The problemA problem introdued to the author by Stephen Ano onerns the omputation of all onservationlaws of the radial SU(2) hiral equation in 2 spatial dimensions where the integrating fators are ofat most 2nd order. The equation an be written as a �rst order system for two 3-omponent vetorsj(r,t), k(r,t): k;t = j;r + j� k (66)j;t = (rk);r =r: (67)Equation (67) is already in onservation law form:(rj);t+(�rk);r= 0and the only other known onservation law (of energy) has zeroth order integrating fators:rk � [k;t�j;r�j� k℄ + j � [j;t�(rk);r =r℄ = �r2 (j � j+ k � k)� ;t+(�rj � k) ;r= 0 (68)The existene onditions for onservation laws below were generated with the program ConLaw2desribed in [12℄. It generates onditions for 6 integrating fators Q1; : : : ; Q6 (like the multipliersrk1; rk2; rk3; j1; j2; j3 on the left hand side of (68)). Eah of the Qi is an unknown funtion of 20independent variables t; r; j;k; l (= j;r );m (= k;r );u (= j;rr );w (= k;rr ). The system onsists of18 onditions of the form 0 = Q1;u1 �Q4;w1 rand 6 onditions of the form0 = Q3;j1 l1r2 +Q3;l1 u1r2 +Q3;j2 l2r2 +Q3;l2 u2r2 +Q3;j3 l3r2 +Q3;l3 u3r2 +Q3;k1 m1r2 +Q3;m1 w1r2+Q3;k2 m2r2 +Q3;m2 w2r2 +Q3;k3 m3r2 +Q3;m3 w3r2 +Q3;r r2 �Q6;j1 k1r2 �Q6;j1 m1r3 +Q6;l1 k1r�Q6;l1 m1r2 �Q6;l1 w1r3 � 2Q6;u1 k1 + 2Q6;u1 m1r �Q6;u1 w1r2 �Q6;j2 k2r2 �Q6;j2 m2r3 +Q6;l2 k2r�Q6;l2 m2r2 �Q6;l2 w2r3 � 2Q6;u2 k2 + 2Q6;u2 m2r �Q6;u2 w2r2 �Q6;j3 k3r2 �Q6;j3 m3r3 +Q6;l3 k3r�Q6;l3 m3r2 �Q6;l3 w3r3 � 2Q6;u3 k3 + 2Q6;u3 m3r �Q6;u3 w3r2 �Q6;k1 l1r3 �Q6;k1 j2k3r3 +Q6;k1 j3k2r315



�Q6;m1 u1r3 �Q6;m1 j2m3r3 �Q6;m1 l2k3r3 +Q6;m1 j3m2r3 +Q6;m1 l3k2r3 �Q6;w1 j2w3r3 � 2Q6;w1 l2m3r3�Q6;w1 u2k3r3 +Q6;w1 j3w2r3 + 2Q6;w1 l3m2r3 +Q6;w1 u3k2r3 +Q6;k2 j1k3r3 �Q6;k2 l2r3 �Q6;k2 j3k1r3+Q6;m2 j1m3r3 +Q6;m2 l1k3r3 �Q6;m2 u2r3 �Q6;m2 j3m1r3 �Q6;m2 l3k1r3 +Q6;w2 j1w3r3 + 2Q6;w2 l1m3r3+Q6;w2 u1k3r3 �Q6;w2 j3w1r3 � 2Q6;w2 l3m1r3 �Q6;w2 u3k1r3 �Q6;k3 j1k2r3 +Q6;k3 j2k1r3 �Q6;k3 l3r3�Q6;m3 j1m2r3 �Q6;m3 l1k2r3 +Q6;m3 j2m1r3 +Q6;m3 l2k1r3 �Q6;m3 u3r3 �Q6;w3 j1w2r3 � 2Q6;w3 l1m2r3�Q6;w3 u1k2r3 +Q6;w3 j2w1r3 + 2Q6;w3 l2m1r3 +Q6;w3 u2k1r3 �Q6;t r3 � k1Q2r2 + k2Q1r2After introduing new unknown funtions xi; yi through ui = xi + yi; wi = xi � yi the 18 shortequations took the form of a total derivative and eah one ould be integrated on its own but whenthe omputed funtions were substituted only indiretly separable equations (ISEs) like (22) wereobtained.2Despite of the initial suess in performing these integrations all attempts to omplete thesolution of the over-determined system failed with the 1999 version of Crak. That this was notsimply a matter of laking omputing power beame obvious after extrating a small sub-systemof equations for only one of the unknown funtions3 4(t; r; x1; x2; x3; y1; y2; y3) where some of theequations are easy to integrate:0 = 4;x3x3y2y3 = 4;x1x2y1y3y3 = 4;x1x2y1y1y3 = 4;x1x2x3y1y1 = 4;x2x3x3x3y1y1y3= 4;x1x2x3x3x3y1y2y2 = 4;x1x2x2x3y1y1y2y2 = 4;x1x2x3x3y3y3y3 �4;x2x3x3x3y1y3y3= 4;x1x2x3x3y1y2y2 �24;x1x2x2x3y1y2y3 = 4;x1x2x3x3y1y2 �24;x1x2x2x3y1y3 �4;x1x2x2x3x3y1y3 x3= 4;x1x2x3x3x3y1y3 x1 � 4;x1x2x3x3y3y3 +4;x2x3x3x3y1y3= 4;x3x3x3y1y3 x1 + 4;x3x3y1y3y3 y1 � 4;x3x3y3y3 (69)= 4;x1x2x3x3y1y2y2y2 y3 + 24;x1x2x2x2y1y2y3 �24;x1x2x2x3y1y2y2 +4;x1x2x2x3x3y1y2y2 x3= 4;x1x2x3x3y1y2y2 y3 + 24;x1x2x2x2x3y1y3 x3 + 24;x1x2x2x2y1y3 �24;x1x2x2x3y1y2= 4;x1x2x3x3x3y1y2 x1x3 � 34;x1x2x3x3y1y2 x1 + 64;x1x2x2x3y1y3 x1�4;x1x2x2x3x3y3y3 x23 + 4;x2x2x3x3x3y1y3 x23Even the solution or at least simpli�ation of this sub-system was not possible. The problem wasnot to �nd equations with the form of a total derivative and to integrate them. The problem wasthe growing number of new funtions of integration (whih did still depend on 7 variables) and theappearane of too many only indiretly separable equations (ISEs).Sine 1999 the module for handling ISEs has been improved onsiderably. The urrent versionof Crak (De. 2001) an simplify the above system quikly using the onventional integrationof total derivatives. Nevertheless, by adding the ability of performing syzygy based integrationsthe omputation speeds up further and the solution involves fewer redundant arbitrary funtions.Tests desribed below show that syzygy based integrations are well suited to be performed alongthe omputation of a di�erential Gr�obner basis without the negative side e�et of introduing toomany redundant funtions. By that Gr�obner basis omputations an be ut short and the risk of amemory explosion be lowered.9.2 A omparison of three omputer runsBefore desribing the details of 3 di�erent omputer runs, a few omments about the setup have tobe made. The pakage Crak for solving and simplifying over-determined PDE-systems ontainsabout 30 modules for di�erent ations to be taken either with individual equations or with groupsof equations of the system. Modules used to solve systems like (69) are2Although eah of the ISEs is over-determined on its own, this over-determination an not be utilized easilybeause there is no independent variable whih ours only expliitly that would lead to diret separations.3New onstants and funtions of integration are all alled i in Crak with suessively inreasing subsript.16



1. Diret separation of an equation with respet to some variable that ours only expliitly inthe equation.2. Substitution of a funtion f either by zero or by at most 2 terms and only if other funtionsourring in these 2 terms depend on fewer variables than f .3. Integration of an equation if it onsists of a single derivative with respet to only one variable.4. Elimination of a funtion f from any equation if f ours only algebraially and linearly and iff depends on all variables ourring in this equation. Substitution of f in all other equations.5. Deleting of any redundant equations as desribed on the bottom of the overview in setion 3.6. Integration based on a syzygy in onservation law form.7. Conventional integration of a PDE but only if suÆiently many integrations are possible suhthat the integrated equation an be used for a substitution.8. Indiret separation of an equation (ISE). (This is a omplex step whih an invoke other diretseparations and indiret separations of resulting equations.)9. Redution of the leading derivative of one equation with the help of another equation orformulation of an integrability ondition between two equations. (This is a typial step in aGr�obner basis omputation.)10. Any integration of any equation even if not omplete.These modules are alled in a spei� sequene whih an be hosen by speifying a list of numbers,eah number representing one module. For example, if in table 1, olumn 2 the priority list of run1 is hosen to be 1 2 3 4 8 9 7 10 then the modules as numbered above are tried in this order untilone module is suessful and then they are again tried beginning with 1 and so on. This is only asimpli�ed desription of the operation of Crak but it is suÆient for the purpose of this setion.run priority list # of time # of terms # of redundant funtionsof ations steps in se in equ. (71) of 6 var. of 5 var. of 4 var. of 3 var.1 1 2 3 4 8 9 7 10 1077 124 6 7 16 2 02 1 2 3 4 7 8 9 10 1175 122 12 4 45 23 53 1 2 3 4 5 8 6 9 7 10 362 23 8 2 19 2 0Table 1. A omparison of three di�erent runs on the system (69).In table 1 three omputer runs are ompared. Column 3 gives the number of suessful allsof the modules in the priority lists. Times shown in olumn 4 have been measured in a sessionof the omputer algebra system REDUCE version 3.7 with 120 MByte memory (although only afew MByte are needed for this omputation) on a 1.7 GHz PC Pentium 4 under Linux. Column5 gives the number of terms in the single unsolved equation whih in the solution (70) below isthe equation (71). In the remaining 4 olumns the number of redundant funtions of 6, 5, 4, or 3variables is shown. For example, if two funtions f(x; y; z) and zg(x) our always together suhthat a substitution f + zg ! f has the same e�et as g ! 0 then g an be set to zero without lossof generality.
17



9.3 Conlusions from the testThe entral issue in these runs is, whether integrations (modules 6 and 7) are given a higher prioritythan the formulation of integrability onditions (module 9) or a lower priority. If integrabilityonditions have a higher priority than integrations, as in run 1, then at �rst a omplete di�erentialGr�obner basis is omputed before integrations start. The bene�t is that the di�erential order ofequations is as low as possible when integrations start (assuming a total degree ordering is usedin the di�erential Gr�obner basis omputation). Consequently fewer integrations are neessary andfewer funtions will be generated whih turn out later to be redundant. The disadvantage is thatthe omputation of integrability onditions may take very long and blow up the systems size, ormay even be pratially impossible.One an attempt to give integrations a higher priority at the prie of more redundant funtionsin the solution. This was done in run 2. The bene�t may be onsiderable, only in our small system(69) the Gr�obner basis omputation is not expensive at all, so the advantage of early integrationsdoes not beome obvious here. But the disadvantage beomes obvious. Integrating higher orderequations generates more new funtions with many of them turning out to be redundant at the end.Finally, in the third run we get the best of both previous runs. Here, early integrations usesyzygies in onservation law form as soon as they beome available. The lowered di�erential orderof equations redues the omplexity of the remaining Gr�obner basis omputation. Also, beausewith eah integration at least 2 equations 0 = P i are satis�ed, the number of new funtions ofintegration is low and the number of variables these funtions depend on is redued. Consequently,only few funtions turn out to be redundant in the omputed solution as seen in olumns 6-9 oftable 1.The following solution is obtained in run 3 after redundant funtions have been deleted (byhand) leaving 11 funtions of 6 variables, 8 funtions of 5 variables and 2 funtions of 4 variables.It is equivalent to the solutions returned in runs 1 and 2.4 = 100;x2 x3y1y2 + 12100;x3 x1y23 + 125; x2x23y1 + 125;y2 x3y1y3 + 133;x2 x3y1 + 133;y2 y1y3+213;x3 x1 + 213;y3 y1 + 100y1y3 � 109x2x3y1 + 170 + 172 + 173x3 + 181y3 + 191 (70)�192 � 193x3 � 194 + 200 + 205 � 1265x23y3 � 81x3 � 83All funtions depend on t; r and in addition on further variables in the following way:83(x2; x3; y1; y2); 81(x2; y1; y2; y3); 173(x1; x2; y2; y3); 172(x1; x2; y2; y3); 170(x1; x2; x3; y2);194(x1; x3; y1; y3); 193(x1; y1; y2; y3); 192(x1; y1; y2; y3); 191(x1; x3; y1; y2); 205(x2; y1; y2; y3);200(x1; x2; y1; y2); 100(x1; x2; x3); 125(x1; x2; y2); 133(x1; x2; y2); 181(x1; x2; x3);213(x2; x3; y3); 230(x1; y1; y3); 229(x1; y1; y3); 228(x1; x3; y1); 65(x2; y1); 109(x1; y2):The funtion 194 has to satisfy the ondition0 = 194;x3y1 x1 + 194;y1y3 y1 � 194;y3 �228 � 229 � 230x3; (71)all other funtions are free. The result of the onservation law investigation for the SU(2) hiralequation in the form (66), (67) is that no other onservation laws with integrating fators of at most2nd order exist.More remarks onerning the ollaboration of modules:� Syzygy based integration an not replae onventional integration. If equations beome de-oupled then no integrability onditions apply and the equations have to be integrated on-ventionally if possible. 18



� The usefulness of onventional integration relies very muh on the eÆieny of a module forthe indiret separation (module 8 in the above list). The orresponding implementation inCrak will be desribed elsewhere.� The issue of avoiding redundant funtions is serious when a system like (69) is only a subsystemof a larger system and the solution of the smaller system is to be substituted in the larger one.Redundant funtions would ompliate the solution of the larger system unneessarily. On theother hand, the identi�ation and deletion of redundant funtions using a method desribedin [13℄, is diÆult and may be more expensive than the solution/simpli�ation of the systemitself. This method does not prevent redundany, it only an identify it in the solution.The pakage Crak is distributed together with the omputer algebra system REDUCE. Anewer version an be down-loaded from http://lie.math.broku.a/twolf/rak.10 SummaryAn integration method has been proposed that is appliable for linear PDE-systems that admitsyzygies, i.e. systems whih are overdetermined as a whole or ontain an overdetermined subsystem.It therefore an not replae the straight forward integration of exat PDEs but when appliable ithas a number of advantages:� The information on whih the integration is based is taken from syzygies in onservation lawform. Syzygies are a by-produt of the omputation of di�erential Gr�obner Basis.� Beause not a single equation is integrated but a number of equations (0 = P i) at one, fewerfuntions of integration, depending on fewer variables are introdued in the proess.� The problem of onventional integration to introdue redundant funtions when integratingwith respet to di�erent variables is either prevented or signi�antly redued.� The new integration produes apart from integrated equations also new syzygies whih areoften the basis for ontinuing the integration further without having to ompute new syzygiesthrough a new Gr�obner basis omputation.� Syzygy based integration, onventional integration and elimination omplement one anotherwell in solving overdetermined linear PDE-systems if given the right priorities.
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Appendix A: Continuation of the introdutory exampleIn this appendix we ontinue the introdutory example by performing three more syzygy basedintegration steps. The omputation is broken up into items. The number(s) at the start of eahitem refer to the line number of the orresponding step in the overview at the end of setion 3.(32): The remaining system to solve onsists of0 = f;xx+f;z (= e2)0 = f;xyz �1: (= e4)(33),(34): satisfying the identity in onservation law form0 = (�e4;x );x +(e2;xy�e4);z(35): with only 2 derivatives.(36): Proeeding as in the �rst integration step we now identify as the onserved urrentP̂ x = �e4;x= �f;xxyz = �Q̂;z (72)P̂ z = e2;xy�e4 = f;xxxy +1 = Q̂;x (73)(37): and as the new potential Q̂ we either identify or ompute using algorithmDivInt in appendixB Q̂ = f;xxy +x1(39),(40): giving the new equation0 = Q̂� 2 = f;xxy +x1 � 2 (=: e5) (74)with the new funtion of integration 2 = 2(y).(41),(42): Equation e4 is redundant as it turns up purely algebraially in0 = P̂ z � Q̂;x= e2;xy�e4 � e5;x :(43): Substitution of e4 in (72) gives the new identity0 = �e2;xxy +e5;xx+e5;z : (75)(36): This is as well a divergene with only two terms�P x = �e2;xy +e5;x= �f;xyz +1 = � �Q;z (76)�P z = e5 = f;xxy+x1 � 2 = �Q;x (77)(37): and the new potential �Q �Q = f;xy +x22 1 � x2 � z1
20



(39),(40): giving the new equation0 = �Q� 3 = f;xy +x22 1 � x2 � z1 � 3 (=: e6) (78)with the new funtion of integration 3 = 3(y).(41),(42): Now, equation e5 is redundant as it turns up purely algebraially in0 = �P z � �Q;x= e5 � e6;x :(43): Substitution of e5 in (76) gives the new identity0 = �e2;xy +e6;xx+e6;z : (79)(36): This is a divergene as well and we will perform the integration yle one more time with�P x = �e2;y +e6;x= �f;yz +x1 � 2 = � �Q;z (80)�P z = e6 = f;xy +x22 1 � x2 � z1 � 3 = �Q;x (81)(37): and the new potential �Q �Q = f;y +x36 1 � x22 2 � xz1 + z2 � x3(39),(40): giving the new equation0 = �Q� 4 = f;y +x36 1 � x22 2 � xz1 + z2 � x3 � 4 (=: e7) (82)with the new funtion of integration 4 = 4(y).(41),(42): Now, equation e6 is redundant as it turns up purely algebraially in �P z in (81)0 = �P z � �Q;x= e6 � e7;x :(43): Substitution of e6 in (80) gives the new identity0 = �e2;y +e7;xx+e7;z : (83)The onlusion of this example is shown in setion 2.1 below equation (20). As argued there thesyzygy based integration of equation (83) is not advantageous as (83) has a onservation law formwith 3 derivatives instead of two. Instead one rather integrates (82) with respet to y and substitutesf in the remaining equation (5).
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Appendix B: The algorithm DivIntThe following algorithm omputes expressions Qij(xn; f�J ) = Q[ij℄ that satisfy DjQij = P i. Thegiven P i = P i(xn; f�J ) are assumed to satisfy DiP i = 0 identially in all f�J .1 Algorithm DivInt2 Input variables: xn, funtions: f� and onserved urrent: P i = P i(xn; f�J )3 Output Qij(xn; f�J ); j > i % satisfying DjQij = P i,4 E; F % E : list of new additional equations5 % F : list of new additional funtions6 Body % no summation over double indies below7 E := fg; F := fg; Qij := 0; with i; j 2 1; : : : ; p; j > i89 % Integrate all terms with funtions f� depending on all variables10 for i := 1 to (p� 1) do11 for j := i+ 1 to p do12 while P i ontains a term aiJ�jf�J do % i.e. while any derivative of any f�13 % ours that involves �j14 P i ! P i �Dj(aiJf�J )15 P j ! P j +Di(aiJf�J )16 Qij ! Qij + aiJf�J1718 % Integrate all derivatives involving funtions f� not depending on all variables19 for i := 2 to p do20 for j := 1 to i� 1 do21 while P i ontains a term aiJ�jf�J do % i.e. while any derivative of any f�22 % ours that involves �j23 P i ! P i �Dj(aiJf�J )24 Qji ! Qji � aiJf�J2526 % Integrate remaining terms27 for i := 1 to p do28 if P i 6= 0 then29 % integrate eah term aiJf�J of P i with respet to any one xj 6= xi30 % preferably one xj with �jf� = 0 in the following way:31 if �jf� = 0 then32 q := f�J R aiJ dxj33 P i ! P i �Djq34 if j > i then Qij ! Qij + q35 else Qji ! Qji � q36 else37 Introdue a new funtion f�(x1; : : : ; xi�1; xi+1; : : : ; xp)38 F ! F [ ff�g39 E ! E [ f0 = �jf� � aiJf�J g40 P i ! P i � aiJf�J41 if j > i then Qij ! Qij + f�42 else Qji ! Qji � f�43 return Qij(xn; f�J ), E (list of new equations), F (list of new funtions)22



Explanation of the algorithmLines 9 - 16This part of the proedure is suÆient if the input expressions P i(xn; f�J ) do only ontain funtionsf� depending on all p independent variables x1; : : : ; xp.A typial example: If an expression P y ontains a term f;z then DyP y (no summation) ontains�yf;z whih has to be anelled by��zf;y fromDzP z (no summation) to give 0 = DkP k (summation)identially in all fJ . This means P z ontains �f;y. In this short example the lines 14 - 16 wouldsubtrat f;z from P y, subtrat �f;y from P z and add f to Qyz. There is no prinipal di�erenebetween P y ontaining a term f;z or P y ontaining aiJ�zf�J .As both, P i and P j are updated in lines 14 and 15, j does not run over indies 1 : : : i�1. BeauseQii = 0 (Qij is antisymmetri) there is no need to integrate an i-derivative in P i and therefore jstarts from i+ 1 in line 11.If all terms in all P i ontain a funtion f� of all variables then any term in any Qij ourstwie, one with an xj-derivative in P i and one as negative xi-derivative in P j. When the programompleted lines 10 - 16, all P i have the value zero and the solution Qij is found (for i < j, valuesfor Qji follow from the antisymmetry).Lines 18 - 42The only possibility that after ompleting lines 10 - 16 not all P i are already zero ours if somef� do not depend on all variables. That is, for example, the ase if funtions entered the problemdue to running DivInt previously in earlier integrations. In general, if terms remain in some P iwhih neessarily depend on less than all variables then one an always omplete the integrations byintroduing new funtions (olleted in a list F in line 38) that have to satisfy additional equations(olleted in a list E in line 39). In order to minimize the number of additional funtions andadditional equations the lines 19 - 24 integrate terms that are xj-derivatives in P i (j 6= i) and lines31 - 35 integrate terms by hanging the expliit appearane of xj. This is shown in the followingexamples.Example: Independent variables: x; y; z, initial values:P x = A(y; z);y+B(y; z);z +C(y; z) +D(y) +G(z)P y = H(x; z);x+K(x; z);z +L(x) +M(x; z) +N(z)P z = R(x; y);x+S(x; y);y+T (x) + U(y) +W (x; y)Qxy = Qxz = Qyz = 0ontaining undetermined funtions A;B;C;D;G;H;K; L;M;N;R; S; T; U and W . After omplet-ing the program up to line 18 the values areP x = C(y; z) +D(y) +G(z)P y = H(x; z);x+L(x) +M(x; z) +N(z)P z = R(x; y);x+S(x; y);y+T (x) + U(y) +W (x; y)Qxy = A(y; z)Qxz = B(y; z)Qyz = K(x; z):After ompleting the program up to line 26 the values areP x = C(y; z) +D(y) +G(z)P y = L(x) +M(x; z) +N(z)P z = T (x) + U(y) +W (x; y)23



Qxy = A(y; z)�H(x; z)Qxz = B(y; z)� R(x; y)Qyz = K(x; z)� S(x; y):The loop beginning in line 27 will integrate the remaining terms in P i. The lines 32 - 35 willintegrate the terms D;G; L;N; T; U and lines 37 - 42 the terms C;M;W to obtainP x = P y = P z = 0Qxy = A(y; z)�H(x; z) + yG(z)� xN(z) + F 1(y; z)Qxz = B(y; z)�R(x; y) + zD(y)� xU(y)� F 3(x; y)Qyz = K(x; z)� S(x; y) + zL(x)� yT (x) + F 2(x; z)with a list F of new additional funtions F 1(y; z); F 2(x; z); F 3(x; y) and list E of new additionalequations F 1(y; z);y = C(y; z)F 2(x; z);z = M(x; z)F 3(x; y);x = W (x; y)eah in less than 3 variables.Referenes[1℄ T. Beker and V. Weispfenning. Groebner bases. Springer Verlag, 1993.[2℄ F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Computing representations for radials of�nitely generated di�erential ideals. In Proeedings of ISSAC 95, pages 158{166. ACM Press,1995.[3℄ E. Hubert. Essential omponents of algebrai di�erential equations. J. of Symb. Comp., 28(4-5):657{680, 1999.[4℄ E. Hubert. Fatorisation free deomposition algorithms in di�erential algebra. J. of Symb.Comp., 29(4-5), 2000.[5℄ M. Kreuzer and L. Robbiano. Computational Commutative Algebra 1. Springer Verlag, 2000.[6℄ E.L. Mans�eld. The di�erential algebra pakage di�grob2. Mapleteh, 3:33{37, 1996.[7℄ P. J. Olver. Appliations of Lie Groups to Di�erential Equations, volume 107 of gtm. SpringerVerlag, New York-Berlin-Heidelberg-Tokyo, 1986.[8℄ G.J. Reid, A.D. Wittkopf, and A. Boulton. Redution of systems of nonlinear partial di�erentialequations to simpli�ed involutive forms. Europ. J. of Appl. Math., 7:604{635, 1996.[9℄ T. Wolf. The program rak for solving PDEs in general relativity. In F.W. Hehl, R.A.Puntigam, and H. Ruder, editors, Relativity and Sienti� Computing: Computer Algebra,Numeris, Visualization, pages 241{251. Springer Verlag, 1996.[10℄ T. Wolf. A linearization of PDEs based on onservation laws. preprint, 1999.[11℄ T. Wolf. The symboli integration of exat PDEs. J. Symb. Comp., 30(5):619{629, 2000.24
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