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tA new integration te
hnique is presented for systems of linear partial di�erential equations(PDEs) for whi
h syzygies 
an be formulated that obey 
onservation laws. These syzygies 
omefor free as a by-produ
t of the di�erential Gr�obner Basis 
omputation. Compared with the moreobvious way of integrating a single equation and substituting the result in other equations thenew te
hnique integrates more than one equation at on
e and therefore introdu
es temporarilyfewer new fun
tions of integration that in addition depend on fewer variables. Espe
ially forhigh order PDE systems in many variables the 
onventional integration te
hnique may lead toan explosion of the number of fun
tions of integration whi
h is avoided with the new method.A further bene�t is that redundant free fun
tions in the solution are either prevented or thattheir number is at least redu
ed.1 A 
riti
al look at 
onventional integrationIn this paper a new integration method is introdu
ed that is suitable for the 
omputerized solutionof systems of linear PDEs that admit syzygies. In the text we will 
all the integration of singleexa
t di�erential equations, i.e. equations whi
h are total derivatives, the `
onventional' integrationmethod (dis
ussed, for example, in [11℄). To highlight the di�eren
e with the new syzygy basedintegration method we have a 
loser look at the 
onventional method �rst. About notation: Todistinguish symboli
 subs
ripts from partial derivatives we indi
ate partial derivatives with a 
omma,for example, �xyei = ei;xy.To solve, for example, the system 0 = f;xx (1)0 = xf;y +f;z (2)for f(x; y; z) one would, at �rst, integrate (1) with 2 new fun
tions of integration g(y; z); h(y; z),then substitute f = xg + h (3)into (2), do a separation with respe
t to di�erent powers of x to obtain the system0 = g;y1



0 = g;z +h;y0 = h;zand solve that to get the solutionf = x(az + b)� ay + 
; a; b; 
 = 
onst:The main gain of information on whi
h the overall su

ess was based did happen after the substi-tution at the stage of separating (2) into 3 equations. The integration of (1) itself did not providenew information. The equation 0 = f;xx is more 
ompa
t than f = xg + h and equally wellusable in an ongoing elimination pro
ess (Gr�obner Basis 
omputation). (Similarly, in this sense,f(x) = a sin(x) + b 
os(x) would not provide new information 
ompared to 0 = f 00 + f as sin and
os are only de�ned as solutions of this ODE.) The main 
on
lusion is: The integration of a singleequation does not ne
essarily imply progress in the solution of a system of PDEs, espe
ially if adire
t separation does not be
ome possible as the result of substituting a 
omputed fun
tion.This is the 
ase in the example 0 = f;yzz (=: e1) (4)0 = f;xx+f;z : (=: e2) (5)dis
ussed in more detail in the next se
tion. Integration of (4) to f = g1(x; y) + zg2(x; y) + g3(x; z)and substitution into (5) does not yield a separable equation and is therefore not as straight forwardto utilize as in the �rst example.There is another problem with the 
onventional method whi
h seems insigni�
ant at �rst sightbut be
omes severe for high order PDE systems in many independent variables, for example in theappli
ation in se
tion 9.Substituting f = g1(x; y) + zg2(x; y) + g3(x; z) into (5) as done in se
tion (2.2) and �ndingthe general solution for g1; g2; g3 is, stri
tly speaking, a di�erent problem from �nding the generalsolution for f of (4), (5)! The general solution for g1; g2, as determined in se
tion 2.2, will involveamong other fun
tions the two essential free fun
tions g6(x); g7(x). From the point of view of theoriginal system (4), (5) these are redundant fun
tions as they 
an be absorbed by g3. Redundan
yis an inherent problem of the 
onventional integration method whi
h has nothing to do of howeÆ
ient the remaining system after integration and substitution is solved. In se
tion 6 this issue isdis
ussed in more detail.With the new syzygy based integration the situation is very di�erent. Here the de
ision whetherto integrate is based on syzygies, i.e. on relations between equations, like0 = (�2x + �z)e1 � �y�2ze2in the last example and is not based on the form of a single equation. This extra information 
ontent
oming from the syzygies allows the method to perform useful integrations for systems like (4), (5)with an instantly useful result. As will be explained further below, syzygy based integration doesnot only integrate one single equation at a time, but in a sense, it performs an integration whi
h is
ompatible with all the equations involved in the syzygy. (More exa
tly, it integrates all equations0 = P i at on
e one time where P i are the 
omponents of the 
onserved 
urrent of the 
onservationlaw of the syzygies.)This restri
tive '
ompatibility 
onstraint' has the e�e
t that the integral involves fewer new fun
-tions of integration whi
h furthermore depend on fewer variables. Consequently fewer new fun
tionshave to be 
omputed later on whi
h shortens the 
omputation. Also, fewer redundant fun
tions aregenerated whi
h not only avoids the explosion of the number of intermediately generated fun
tions2



but also simpli�es the �nal solution. These e�e
ts are espe
ially important for high order PDEs inmany variables as explained in se
tion 6.The above distin
tions between both integration te
hniques are not purely a
ademi
. Se
tion9.2 des
ribes how integrations 
an be 
ombined with eliminations. To apply integrations early inthe solution pro
ess is not new. This strategy has been pursued by the program Cra
k for nearly2 de
ades. What is interesting and new is how mu
h more bene�
ial the syzygy based integrationproves to be 
ompared with 
onventional integration. In se
tion 9.2 su
h a 
omparison has beenmade. One problem has been solved 3 times with a 
ombination of di�erent modules, in
ludingelimination and 
onventional and syzygy based integration. The 3 runs di�er only in the priorityof applying these modules and were 
ompared by their running times as well as the number ofredundant fun
tions in the �nal solution.About the remainder of the paperIn se
tion 3 the algorithm is des
ribed in general and an overview is provided.Using the information 
ontent of syzygies in the form of 
onservation laws seems to be the mostdire
t and useful way but it is not the only one possible. In se
tion 4 a variation of the algorithmis explained whi
h is based on vanishing 
urls of syzygies.Di�erent aspe
ts of the 
omputation of 
onservation laws for syzygies are the subje
t of the followingse
tion.The redundan
y problem mentioned above is looked at in detail in se
tion 6.Even though 
onservation laws of syzygies might be known, it may not be advantageous to usethem if the aim is the exa
t solution of the original PDE-system. In se
tion 7 examples are given.A short des
ription of how syzygies are re
orded in se
tion 8 is followed by se
tion 9 introdu
ing the`real-life' appli
ation whi
h led to the development of syzygy based integration. In three 
omputerruns it is shown that this integration method and elimination 
an be naturally 
ombined for thesolution of linear PDE systems.In the following se
tion the introdu
tory example is 
ontinued and both integration methods are
ompared.2 An introdu
tory exampleWe 
ontinue the above example to explain the basi
 me
hanism of syzygy based integration. Amore 
omplex example is given in se
tion 9.2.1 Treated with the new methodIn applying integrability 
onditions for PDEs systemati
ally, i.e. in 
omputing a di�erential Gr�obnerbasis, identities between equations 0 = ea will result that take the form of di�erential expressionswith the ea as dependent variables.We 
onsider the simple system (4), (5), i.e.0 = f;yzz (= e1)0 = f;xx+f;z : (= e2)Assuming, for example, a total ordering >o of derivatives that implies �x >o �z and �y >o �z, adi�erential Gr�obner Basis 
omputation would �rst eliminate f;xxyzz through 
ross-di�erentiation:0 = e2;yzz �e1;xx= f;yzzz (=: e3) (6)3



then a substitution of f;yzz using e1 yields 0 = e3 � e1;zand a substitution of e3 using (6) provides the identity0 = e2;yzz�(e1;xx+e1;z ): (7)The 
hoi
e of ordering does not matter here. Any ordering would have resulted in identity (7).In this paper we 
on
entrate ourselves to the integration of syzygies, like (7), whi
h either havethe form of a divergen
e or 
an be 
ombined linearly to give a divergen
e 0 = DiP i with suitableve
tor 
omponents P i(ek) that are di�erential expressions in the ek. Only in se
tion 4 we outline avariation of this prin
iple to deal with a vanishing 
url of syzygies.The 
omputation of 
onservation laws of syzygies has several aspe
ts: how to do it in general,why the 
omputation of 
onservation laws for syzygies is a relatively simple task and how to do itin less generality but mu
h faster. In the interest of a 
ompa
t example we postpone this dis
ussionto se
tion 5.There are di�erent ways to write (7) as a divergen
e. We 
hoose any one with as few as possible
omponents (here two: P x; P z). This preferen
e is justi�ed towards the end of this se
tion belowequation (20). The question how 
onservation laws with fewer 
omponents are 
omputed is des
ribedin se
tion 5 as well.We obtain: 0 = �e1;xx+(e2;yz �e1);z (8)= P x;x+P z;z (9)= (�f;xyzz );x+(f;xxyz );z : (10)In the following we will use the ve
tor P i in two representations, �rst in terms of ei, in our examplefrom the syzygy (8): P x = �e1;x ; P z = e2;yz �e1 (11)and se
ond the representation of P i in terms of the fun
tion f , in our example from the identity(10): P x = �f;xyzz ; P z = f;xxyz : (12)With P satisfying the 
onservation law 
ondition (9) we 
an write P as a 2-dim. 
urlP x = �Q;z ; P z = Q;x (13)for some potential Q. Using for P i the representation (12) we identifyQ = f;xyz :The existen
e of di�erential expressions in unknowns, say f�, for the potential Q is guaranteedbe
ause all syzygies and all their 
onsequen
es like 0 = DiP i are satis�ed identi
ally for any f�. Inthe appendix B an algorithm DivInt is given that 
omputes potentials Qij(f�) in general for anarbitrary number of independent variables.To do the next step in this example, we are reminded that expressions P i(ej) are linear homo-geneous in the ej and that they therefore must be zero, i.e. P x = P z = Q;x= Q;z = 0. This meansthat Q is independent of x; z, giving Q = 
1(y) and the new equation0 = Q� 
1 = f;xyz �
1 (=: e4) (14)4



with the new fun
tion of integration 
1 = 
1(y).Apart from the integral (14) we also get new syzygies. Having on one hand expressions for P iin terms of e1; e2 due to equations (11) and on the other hand P i in terms of Q;j from equations(13) and Q in terms of e4 from equation (14) we get two new identities0 = P x +Q;z = �e1;x+e4;z (15)0 = P z �Q;x= e2;yz �e1 � e4;x : (16)As equation e1 turns up algebrai
ally in at least one of the new identities, this equation 0 = e1 isredundant and 
an be dropped. Redundan
y of an original equation due to integration need notalways be the 
ase but it is the 
ase in this example be
ause at least one of P x and P z happens tobe algebrai
 in e1 (in this 
ase P z). Identity (16) has already 
onservation law form. Substitutinge1 from identity (16) into (15) preserves this form:0 = (�e4;x );x +(e2;xy�e4);z : (17)This 
ompletes one syzygy based integration step. Be
ause the new system of equations 0 = e2 = e4obeys the syzygy (17) whi
h has a 
onservation law form with only 2 
omponents P x; P z we 
anstart another integration step without having to do a di�erential redu
tion or 
ross di�erentiationstep. It turns out there are in total 3 more very similar syzygy integration steps to be performedwhi
h are summarized in appendix A. After these 3 steps the remaining system to solve 
onsists ofthe 2 equations 0 = f;xx+f;z (= e2) (18)0 = f;y +x36 
1 � x22 
2 � xz
1 + z
2 � x
3 � 
4 (= e7) (19)whi
h satisfy the identity 0 = �e2;y +e7;xx+e7;z : (20)This is a divergen
e too but now in three di�erentiation variables. With three non-vanishing P ithe 
ondition 0 = DiP i has the solution P i = DjQij with more than one non-vanishing Qij and the
ondition 0 = P i = DjQij has the solution Qij = Rijk;k with free fun
tions Rijk(xn) = R[ijk℄(xn)where [ijk℄ stands for total antisymmetrization. In three dimensions this introdu
es one new fun
tionR(xn) = Rxyz through Qxy = R;z ; Qyz = R;x ; and Qzx = R;y. By performing a syzygy basedintegration again we would solve the remaining equations (18),(19) for one fun
tion f but alsointrodu
e one new unknown fun
tion R of all variables and therefore not make real progress. Thisis demonstrated in the �rst example in se
tion 7. These 
onsiderations explain why we try to �nd
onservation laws of syzygies with as few as possible non-zero P i.We return to our example and de
ide to integrate 0 = e7 (i.e. (19)) 
onventionally be
ause� identity (20) 
an not be written as a divergen
e with only 2 terms and� equation (19) 
an be integrated 
onventionally with respe
t to only one integration variable,so we will not introdu
e redundant fun
tions as dis
ussed in the introdu
tion and in se
tion6.To y-integrate equation (19) we introdu
e four new fun
tions d1(y); : : : ; d4(y) through 
i = di;y andone new fun
tion d5 = d5(x; z) and obtainf = �x36 d1 + x22 d2 + xzd1 � zd2 + xd3 + d4 + d5 (21)5



with the only remaining equation (18) now taking the shape0 = d5;xx+d5;z : (22)A single equation does not have syzygies and the method 
an not be applied further. What wea
hieved is the integration of equation (4) and the 
hange of equation (5) for 3 independent variablesinto equation (22) for 2 variables.2.2 The same example in a 
onventional treatmentFor 
omparison, we solve the system (4), (5) again, this time in the 
onventional dire
t way. Afterintegrating (4) to f = g1(x; y) + zg2(x; y) + g3(x; z) (23)and substitution of f the equation (5) reads0 = g1(x; y);xx+zg2(x; y);xx+g3(x; z);xx+g2(x; y) + g3(x; z);z : (24)In equation (24) there is no fun
tion that does depend on all variables and ea
h variable doeso

ur in at least one fun
tion. An algorithm for su
h `indire
tly separable equations' (ISEs) is
ontained in the pa
kage Cra
k (see [9℄ and sub-se
tion 9.2). These equations undergo a series ofdi�erentiations and divisions (produ
ing a list of divisors)� to eliminate all fun
tions of some variable,� to do a dire
t separation with respe
t to this variable, and� to use the same list of divisors now in reverse order as integrating fa
tors to ba
k-integratethe equations whi
h resulted from dire
t separation.In the 
ase of equation (24) a single y-di�erentiation eliminates g3 and allows a dire
t z separation(as g1; g2 are independent of z) giving 0 = g2(x; y);xxy ; 0 = g1(x; y);xxy+g2(x; y);y and throughba
k-integration with respe
t to y further0 = g2(x; y);xx+g4(x) (25)0 = g1(x; y);xx+g2(x; y) + g5(x) (26)0 = g3(x; z);xx+g3(x; z);z �zg4(x)� g5(x) (27)with new fun
tions of integration g4; g5. Renaming g4 = g6(x);xxxx ; g5 = g7(x);xx and integratingequations (25), (26) givesg2 = �g6(x);xx�xg8(y)� g9(y) (28)g1 = g6(x) + x36 g8(y) + x22 g9(y) + xg10(y) + g11(y)� g7(x) (29)0 = g3(x; z);xx+g3(x; z);z �zg6(x);xxxx�g7(x);xx (30)f = g3(x; z) + g6(x) + x36 g8(y) + x22 g9(y) + xg10(y) + g11(y)� g7(x)�z(g6(x);xx+xg8(y) + g9(y)): (31)The solution (31) is identi
al to (21) and the remaining 
ondition (30) is identi
al to (22) if we dropthe redundant fun
tions g6; g7 whi
h 
an be absorbed by g3 and substitute g8 = �d1; g9 = d2; g10 =d3; g11 = d4; g3 = d5. A method to re
ognize redundan
y is des
ribed in [13℄. It involves the solutionof an over-determined system of equations whi
h involves even more e�ort.6



The introdu
tion of redundant fun
tions g6; g7 in the 
onventional method was unavoidablebe
ause after rea
hing system (25) - (27) with the task to 
ompute g1; : : : ; g5 the information waslost that, stri
tly speaking, not the most general expressions for g1; : : : ; g5 need to be 
omputed butonly the most general expression for f = g1(x; y) + zg2(x; y) + g3(x; z). Setting g6 = g7 = 0 wouldbe a restri
tion for g2 and g1 in (28), (29) but is not a restri
tion for f in (31).3 The algorithm in generalIn our notation xi; i = 1; : : : ; p are the independent variables and f� are the unknown fun
tionswhi
h do not need to depend on all xi. These fun
tions satisfy equations 0 = ea(xn; f�J ) whereJ is a multi-index (standing, for example, for 112, i.e. �2x1�x2) and where f�J stands for a possibledependen
e on f� and any partial derivatives of f�. Total derivatives appear as Di. Summation isperformed over identi
al indi
es.The following des
ription is summarized in the overview underneath. The number(s) at thestart of ea
h item refer to the line number of the 
orresponding step in the overview.(32),(33): For a given system of di�erential equations (32) the investigation of integrability 
ondi-tions (e.g. Gr�obner basis 
omputation) yields identities (33), 
alled syzygies. In these syzygiesthe ek take the role of dependent variables. The program Cra
k has been used to 
omputesyzygies for examples presented in this paper but many other 
omputer algebra programsare available (for example, RIF [8℄, di�alg [2℄,[3℄,[4℄, di�grob2 [6℄) although only few generatesyzygies automati
ally.(34): To �nd 
onservation laws of syzygies one either 
an perform a more expensive but generalsear
h by using the pa
kage ConLaw [12℄ or other 
omputer algebra software, or one 
ando a more spe
ialized, less general but faster 
omputation as des
ribed in se
tion 5.3. In the
onservation laws as in the syzygies the dependent variables are the ek.In order to introdu
e as few as possible new fun
tions through a syzygy based integration,one aims at 
onservation laws with as few as possible non-zero P i (see dis
ussion towards theend of se
tion 2.1). Possible methods to a
hieve this are des
ribed in se
tion 5.2.Most often syzygies are very simple expressions and already have a 
onservation law form.Computing 
onservation laws is not fully algorithmi
 but it is argued in se
tion 5.1 that thistask is relatively simple for under-determined systems of syzygies.(35): If a 
onservation law for the syzygies is known then the following steps 
an de�nitely beperformed. The question is only whether it is bene�
ial for the purpose of the 
omputation.If one has found a 
onservation law with only 2 
omponents P i then the integration willintrodu
e just one new 
onstant and will always be bene�
ial. If the 
onservation law has 3 ormore 
omponents P i then at least one new fun
tion of all variables will be introdu
ed. In that
ase, if the purpose of the integration is the solution of the PDE system (32) then one wouldhave to balan
e how many fun
tions one 
an solve for due to the new integrated equations (39)against how many new fun
tions are introdu
ed and possible de
ide not to 
ontinue. Examplesfor syzygy based integrations whi
h are useful from the point of solving PDE-systems andothers that are not are shown in se
tion 7. If usefulness 
an not be de
ided at this stage thenthe integration should be performed and de
ided afterwards. The 
omputational 
omplexityof the integration, i.e. of the algorithm DivInt is very low.(36): In the 
omputed 
onserved 
urrents P i(x; ek) we repla
e the equation names ek by theirexpressions (32) in terms of x; f�. 7



(37): The resulting P i(x; f�) in (36) are the input to the algorithm DivInt (given in the appendixB) to 
ompute a spe
ial solution for the potentials Qij = Q[ij℄(x; f�) satisfying P i = DjQij.Here again [ij℄ stands for anti-symmetrization. DivInt works be
ause the kernel of a diver-gen
e DiP i is a 
url DjQij with Qij = �Qji and be
ause 0 = DiP i is satis�ed identi
ally inall f� and their derivatives.(38): Be
ause the syzygies 0 = 
m(x; ek) are linear homogeneous expressions in the ek, thereforeDiP i being a linear homogeneous expression in the 
m is also a linear homogeneous expressionin the ek. Hen
e the P i are linear homogeneous expressions in the ea. Consequently, we have0 = P i in the spa
e of solutions of the original equations.1(39): On the other hand, the algorithm DivInt 
omputes expressions Qij satisfying P i = DjQijidenti
ally and therefore 0 = DjQij in the spa
e of solutions of the original equations. Thegeneral solution of this 
ondition for the Qij is shown in (39) and is the result of the whole
omputation. Its form depends on the number p of non-vanishing 
omponents P i: for p = 2a single 
onstant of integration R is introdu
ed for p > 2 one or more fun
tions Rijk(x) areintrodu
ed.(40): The formal integration of 0 = DjQij gives new equations whose right hand sides are abbre-viated by eij.(41): We are instantly able to formulate syzygies whi
h these new equations 0 = eij satisfy.(42),(43): If any one of them 
an be solved for one em (as indi
ated in (42)) then em = ! 
an besubstituted in other syzygies and the original equation 0 = em(x; f�) 
an be deleted as it is a
onsequen
e of the equations ek; eij in !(x; ek; eij;j ).(44): 1. As new syzygies have been generated in (41) there is a 
han
e that anyone of them hasalready a 
onservation law form, like (15).2. The substitution of a redundant equation in step (42) may also lead to a syzygy in 
onser-vation law form, either in the other newly generated syzygy or in any other syzygies.3. Finally, there is always the possibility that the new syzygies 
ombined with other syzygiestake a 
onservation law form. This would have to be found out by a 
omputation, for exampleusing the program ConLaw.Given system: 0 = ek(x; f�) (32)Cra
k ! Syzygies: 0 = 
m(x; ek) (33)ConLaw! Cons. law form: 0 = DiP i(x; ek); (34)Is CL useful? If not then stop. (35)Conserved 
urrent: P i = P i(x; ek)jek!ek(x;f�) = P i(x; f�) (36)DivInt ! New potentials: P i(x; f�) = DjQij with Qij = Q[ij℄(x; f�) (37)Integration of: 0 = P i = DjQij (38)to new integral(s): Qij(x; f�)=(R = 
onst in 2 dimRijk;k with Rijk=R[ijk℄(x) in >2 dim (39)New equation names: 0 = ( Qij(x; f�)� RQij(x; f�)� Rijk;k ) =: eij (40)1When 
omputing a di�erential Gr�obner Basis the equations in the �nal basis are also only di�erential 
onsequen
esof the initial equations and one would not want to delete them. Here the situation is di�erent. 0 = em has beenintegrated and 
an be deleted if em o

urs algebrai
ally in other syzygies.8



New syzygies: ! 0 = P i(x; ek)� eij;j (41)Redundan
ies? em = !(x; ek; eij;j )! (42)� substitution of em = ! in any syzygy (43)� deleting equation 0 = emreturn to the determination of 
onservation laws for syzygies (44)The 
ontinuation of the introdu
tory example in appendix A is itemized similar to the des
riptionabove. This allows the reader to go through an example and 
ompare it with the overview step bystep.4 An integration based on 
urls of syzygiesThe des
ribed ansatz of extra
ting information out of syzygies in order to do integrations is notthe only possible way. In this se
tion we want to provide a di�erent integration method, this timebased on vanishing 
urls of syzygies. We will see that it is even more e�e
tive than divergen
ebased integration but the required stru
ture of the system of syzygies is more spe
ial whi
h isthe reason why it has not been implemented in Cra
k. Also, the 
omputation of 
onservationlaws for syzygies was implemented so far be
ause 
omputer programs, like ConLaw, are availableto 
ompute 
onservation laws and be
ause the existen
e of 
onservation laws is a relative weak
ondition for syzygies. The method based on 
urls is shown in the following overview.Given system: 0 = ek(x; f�)Syzygies: 0 = 
m(x; ek)Vanishing 
url 
ond.: 0 = DjP ij with P ij = P [ij℄(x; ek);Curl free tensor: P ij = P ij(x; ek)jek!ek(x;f�) = P ij(x; f�)New potentials: P ij(x; f�) = DkQijk with Qijk = Q[ijk℄(x; f�)Integration of: 0 = P ij = DkQijkto new integral(s): Qijk(x; f�)=(R = 
onst in 3 dimRijkl;l with Rijkl=R[ijkl℄(x) in >3 dimNew equation names: 0 = ( Qijk(x; f�)� RQijk(x; f�)� Rijkl;l ) =: eijkNew syzygies: ! 0 = P ij(x; ea)� eijk;kRedundan
ies? em = !(x; ek; eijk;k )! substitution of em� substitution of em = ! in any syzygy� deleting equation 0 = emreturn to the determination of vanishing 
urls or divergen
es for syzygiesThe super�
ial di�eren
e between divergen
e and 
url based integration is that P;Q;R have oneextra index for the 
url based method. This method also needs at least 3 independent variables.The following two examples involve ea
h 4 independent variables and allow a 
loser 
omparison ofboth methods.A typi
al example:For 4 unknown fun
tions a; b; 
; d depending on x; y; z; t a system of 6 equations0 = d;z�
;t (=: exy) ; 0 = b;t�d;y (=: exz) ; 0 = 
;y �b;z (=: ext)0 = d;x�a;t (=: eyz) ; 0 = a;z �
;x (=: eyt) ; 0 = b;x�a;y (=: ezt)9



is given. It has syzygies 0 = exy;y + exz;z + ext;t0 = �exy;x + eyz;z + eyt;t0 = �exz;x � eyz;y + ezt;t0 = �ext;x � eyt;y � ezt;zwhi
h take the form of a vanishing 
url: 0 = DjP ij for P ij = eij leading to potentials QijkQxyz = d; Qtxy = 
; Qxzt = b; Qytz = aand a single new free fun
tion of integration Rxyzt = g(x; y; z; t). The resulting integrals area = g;x ; b = g;y ; 
 = g;z ; d = g;t :A related example for a 
onservation law syzygy:In 
omparison, the typi
al example using a 
onservation law syzygy in 4 independent variableswould involve 6 unknown fun
tions a; b; 
; d; f; g and 4 equations, so a less over-determined system:0 = a;y +b;z +
;t (=: e1) ; 0 = �a;x+d;z +f;t (=: e2)0 = �b;x�d;y +g;t (=: e3) ; 0 = �
;x�f;y �g;z (=: e4):The 
onservation law 0 = e1;x+e2;y +e3;z +e4;t gives P i = ei and potentialsQxy = a; Qxz = b; Qxt = 
; Qyz = d; Qyt = f; Qzt = g:The resulting integrals area = r;z�s;t ; b = u;t�r;y ; 
 = s;y�u;z ; d = r;x�w;t ; f = w;z�s;x ; d = u;x�w;ywith new arbitrary fun
tions r; s; u; w.If both methods would be appli
able, i.e. if the system of syzygies would provide a vanishingdivergen
e and a vanishing 
url then one would prefer the 
url based integration be
ause it makesuse of more syzygies.The last two examples look very arti�
ial but one 
ould ex
hange the unknown fun
tionsa; b; 
; : : : by any fun
tionally independent expressions, ea
h of them involving at least one di�erentfun
tion, and the 
omputations and results would be un
hanged.The remainder of the paper is 
on
erned with divergen
e based integration.5 How to �nd 
onservation laws of syzygiesIn order to �nd a 
ombination of syzygies that is a divergen
e one 
ould apply 
omputer algebraprograms ConLaw as des
ribed in [12℄, [13℄ by regarding the syzygies as the equations and the eaas unknown fun
tions. In the following subse
tions we dis
uss why 
omputing 
onservation lawsof syzygies is simpler than 
omputing 
onservation laws in general, how one 
an �nd 
onservationlaws with fewer 
omponents than independent variables and how 
onservation laws for syzygies aredetermined in Cra
k.5.1 Under-determination of syzygiesIf one interprets syzygies as PDEs for unknowns ek, then the original equations ek = ek(xi; f�J )are spe
ial solutions of these syzygies where the f� play the role of arbitrary fun
tions in thesesolutions. Be
ause at least one of the f� depends on all variables xi (otherwise the original system10




onsists only of ISEs to be treated di�erently, not by 
he
king integrability 
onditions), the syzygiesmust be an under-determined PDE-system for the unknowns ek. Computing 
onservation laws forunder-determined systems of PDEs is an even more over-determined problem. The 
onservationlaw 
onditions have to be satis�ed identi
ally in a jet spa
e with 
oordinates xn; ea and all partialderivatives of all ea. The more ea o

ur in the syzygies the more restri
tive are their 
onservationlaw 
onditions. Another way to see this is that 
onditions for integrating fa
tors to give 
onservationlaws are obtained by applying the variational derivative (Euler-Lagrange operator) to the produ
tof integrating fa
tors and syzygies (see [7℄). Be
ause there is one Euler operator for ea
h ea weget as many 
onditions as there are di�erent ea. Finally, the more over-determined a system of
onditions is, the easier it is to solve. Therefore the subtask of 
omputing 
onservation laws ofsystems of syzygies is usually not a problem.5.2 Choosing between di�erent syzygy 
onservation lawsThe integration of a syzygy 0 = DiP i with two derivatives 0 = DxP x +DyP y is always useful butnot ne
essarily the integration of a syzygy with more than 2 derivatives be
ause there is at leastone new fun
tion of integration of all variables (see the example in se
tion 7). Sometimes there isa 
hoi
e allowing to write a syzygy in di�erent forms, for example0 = e1;x+(e2;x )y + e3;z
an also be written as 0 = (e1 + e2;y );x+e3;z :To �nd out whether a 
onservation law with fewer derivatives exists one has two options. First, one
an make an ansatz for the 
onservation law with fewer derivatives and solves the resulting 
onditions(for example, with the programs ConLaw1 or ConLaw3). Alternatively, one 
omputes the mostgeneral 
onservation law involving arbitrary fun
tions. If a 
onservation law exists whi
h does not
ontain derivatives DjP j; j = m; : : : ; p then 0 = Dj(CP j); j = 1; : : : ; m � 1 is a 
onservationlaw with an arbitrary fun
tion C = C(xm; : : : ; xp). Reversely, �nding a 
onservation law involvingan arbitrary fun
tion C(xm; : : : ; xp) 
an be exploited to derive a 
onservation law involving noderivatives with respe
t to xm; : : : ; xp as it is des
ribed in [10℄.5.3 A faster method to �nd 
onservation lawsMethods des
ribed above de
ide whether a 
onservation law 
an be built from syzygies, i.e. whetherthere is one in the di�erential ideal of the syzygies. Computations to de
ide this general questionare potentially mu
h more expensive than the other steps of the syzygy based integration whi
h areall very qui
k. In the program CRACK therefore a di�erent, less general but mu
h faster approa
his taken. Instead of determining whether a linear 
ombination of syzygies exists that makes upa 
onservation law, the program 
he
ks ea
h individual syzygy whether it 
an be written as adivergen
e.This is done by using 
onventional integration to integrate the syzygy with respe
t to the �rstvariable, say x to obtain P x, then integrating the remainder with respe
t to the se
ond variable,say y to obtain P y and so on. A divergen
e is obtained when no remainder remains after the lastvariable. To �nd whether the syzygy 
an be written as a divergen
e with only two P i the aboveintegration is tried at �rst with all pairs of two independent variables. For example, in the 
ase ofsyzygy (7) 0 = e2;yzz �(e1;xx+e1;z )an x-integration gives P x = �e1;x. The remainder e2;yzz�e1;z 
an not be 
ompletely y-integratedbut z-integrated to P z = e2;yz �e1. 11



6 The redundan
y problemRedundant fun
tions are unavoidably generated as soon as an equation is 
onventionally integratedwith respe
t to at least two di�erent variables, for example, in the integration of 0 = A;x1;x2 to0 = A+ g(x1)+h(x2) where g; h depend in addition on all other independent variables o

urring inthe expression A. If A 
ontains n variables x1; : : : ; xn then the arbitrariness of g and of h overlapto the extend of one fun
tion of x3; : : : ; xn. In other words, if g and h are 
omputed from furtherequations then there will be one redundant fun
tion of n�2 variables in the solution of the originalproblem.Let us work out an estimate of how mu
h redundan
y is generated when integrating high orderequations. If the 
onventional method integrates0 = A;(x1)m1 ;:::;(xn)mnto A = nXi=1 mi�1Xj=0 gij (xi) jwhere gij are free fun
tions of all variables apart from xi then any two fun
tions gia; gib; a 6= bhave no overlap as their terms gia (xi)a; gib (xi)b involve di�erent powers of xi. Any other pairs offun
tions gab; g
d; a 6= 
 overlap. In total there is an overlap within pairs of fun
tions gij equivalentto n�1Xi=1 nXj=i+1mi �mj (45)fun
tions of n � 2 variables. In the introdu
tory example the integration of 0 = f;yzz gave rise to1 � 2 = 2 redundant fun
tions of 3 � 2 = 1 variable and in the `real-life' appli
ation in se
tion 9the integration of 0 = 
4;x3x3y2y3 for 
4(t; r; x1; x2; x3; y1; y2; y3) generates an overlap within pairs offun
tions equivalent to 2�1+2�1+1�1 = 5 fun
tions of 6 variables and for 0 = 
4;x1x2x3x3x3y1y2y2even an equivalent of 21 fun
tions of 6 variables. The overlap of two fun
tions is partially also anoverlap with other third fun
tions and so on and should not be 
ounted twi
e when trying to a

ountexa
tly for all the redundan
y. But this 
orre
tion 
on
erns the arbitrariness 
ontent equivalent tofun
tions of less than n � 2 variables so the above formula (45) is a good initial approximation ofredundan
y. Keeping in mind that typi
ally a few hundred su
h integrations may be ne
essary, theseverity of the problem be
omes obvious.Is the redundan
y problem an artifa
t of the 
hosen examples?If one determines higher order symmetries of PDEs then the symmetry 
onditions may be linearPDEs in, say, 30 independent variables (
oordinates in jet spa
e). Usually the general solution ofthis overdetermined linear PDE-system involves 
onstants (
orresponding to individual symmetries)whi
h means that 30 
onventional `su

essive layers' of integrations would have to be done, ea
h`layer' 
ontaining integrations that express a fun
tion of n variables through fun
tions in n � 1variables. In total at least several hundred integrations may be
ome ne
essary. From this point ofview the above mentioned appli
ation in se
tion 9 to 
ompute 
4 is typi
al.Could redundan
y be prevented otherwise?Partial di�erential equations may 
ontain symmetries involving arbitrary fun
tions but if not thenthe general solution of the symmetry 
onditions 
ontains only 
onstants. In that 
ase 
hoosing astri
tly lexi
ographi
al ordering of derivatives in the elimination pro
ess the di�erential Gr�obnerbasis will involve ordinary di�erential equations (ODEs). They may not be in the form of totalderivatives but at least in 
ase they 
ould be integrated, the redundan
y problem would not appearas ea
h ODE is integrated with respe
t to only one independent variable. The drawba
k is thatGr�obner Basis 
omputations are well known to be 
omputationally mu
h more expensive when12



performed with a lexi
ographi
al ordering of variables than when performed using a total degreeordering of variables. A total degree ordering will provide shorter equations of lower di�erential orderbut with mixed derivatives, leading to redundan
y with 
onventional integration. The 
on
lusion isthat even in the spe
ial 
ases where the general solution of the linear PDE system 
ontains essentiallyonly 
onstants, the syzygy based integration is superior allowing to use elimination s
hemes withtotal degree orderings that are more eÆ
ient than s
hemes using stri
tly lexi
ographi
al orderingand still being able to redu
e the redundan
y problem.Does syzygy based integration 
ure the redundan
y problem 
ompletely?In the 
ourse of one syzygy based integration all equations 0 = P i are integrated at on
e one time.If 0 = P i(ej) is equivalent to the whole system 0 = ek, or, like in the introdu
tory example (4),(5)where su

essive syzygy based integration integrates the system, then redundan
y is avoided. If,on the other hand, only a subsystem of equations 0 = ek is involved in 0 = P i(ej) and the resultof a syzygy based integration has to be substituted in other equations then redundan
y may stillappear as re
orded in table 1 in se
tion 9.2 but to a 
learly lesser extend.Is there another way to determine redundant fun
tions or 
onstants in order to delete them?In 
omputations where ea
h free 
onstant in the solution of an overdetermined PDE-system 
orre-sponds to a symmetry or to a 
onservation law one is interested to determine and drop redundan
yin order to get an a

urate a

ount of their number. For this purpose a method has been developed(see [13℄) but this requires the solution of an overdetermined PDE-system on its own and maytherefore be expensive.7 Cases when a syzygy based integration is not usefulWhen applying the new integration method to solve a PDE-systrem it not only matters whether allsteps are algorithmi
 but also whether its exe
ution is bene�
ial. Information 
ontained in syzygiesis useful if it provides a fa
torization of di�erential operators. If they do not fa
torize (for example, ifthey are of �rst order) then a syzygy based integration 
an still be useful if more fun
tions are solvedfor than new fun
tions are introdu
ed. If the divergen
e DiP i 
ontains more than two derivatives,i.e. the 
onserved 
urrent P i has more than 2 
omponents, then the integral equations (39) 
ontainat least one new fun
tion Rijk of all variables and we may not gain new information from theintegration if we 
an not solve for at least 2 fun
tions. This is demonstrated in the following seriesof 3 examples with su

essively more fun
tions to be solve for and an in
reasing usefulness of theintegration.Example:When 
omputing the Gr�obner basis of the two equations0 = f;x+f;y (=: e1) (46)0 = f;z (=: e2) (47)for a fun
tion f = f(x; y) (and in doing that 
on�rming that they are already a Gr�obner basis) onewill generate the identity 0 = e2;x+e2;y �e1;z : (48)From identifying P x = e2 from (48) and the general formula P x = DyQxy + DzQxz together with(47) we identify Qxy = 0; Qxz = f; Qyz = f . With the new fun
tion Rxyz = 
(x; y; z) substitutedinto the formula Qij = Rijk;k the new equations are0 = 
;z (49)0 = f � 
;x (50)0 = f + 
;y : (51)13



After a substitution of f from (50) into (51) they are identi
al to the original set (46), (47), onlynow for a fun
tion 
 instead of f . No progress was made. In 
ontrast, for the following two similarexamples the integration of syzygies is advantageous.Example:For the equations 0 = f;x+g;y (=: e1) (52)0 = f;z (=: e2) (53)0 = g;z (=: e3) (54)the identity 0 = e2;x+e3;y�e1;z (55)results. Integrated in the above manner it gives0 = 
;x+g (56)0 = �
;y +f (57)0 = 
;z (58)leaving only equation (58) for 
 = 
(x; y; z) to be solved, an improvement 
ompared to the originalsystem (52) { (54). In the next example no equations remain to be solved.Example:For the equations 0 = h;y�g;z (=: e1) (59)0 = f;z �h;x (=: e2) (60)0 = g;x�f;y (=: e3) (61)the identity 0 = e1;x+e2;y +e3;z (62)leads to 0 = f + 
;x (63)0 = g + 
;y (64)0 = h+ 
;z (65)with an arbitrary fun
tion 
 = 
(x; y; z) and no remaining equation.In order to in
orporate this method of integration into a general program for solving over-determined systems the usefulness of integration has to be judged automati
ally based on thenumber of derivatives in the divergen
e and the number of fun
tions solved for. But also otheradjustments to the whole program have to be made. These are dis
ussed in the following shortse
tion.8 ImplementationApart from the implementation of the algorithmDivInt as shown in the appendix B, also 
hanges tothe pa
kage Cra
k were needed in order to automate syzygy based integrations. When 
he
kingintegrability 
onditions in a Gr�obner basis 
omputation the program had to keep tra
k of any14



resulting identities (syzygies). This was done in the following way whi
h is 
on
eptually the sameas the extended Bu
hberger algorithm (see, for example, the books [1℄ and [5℄).To ea
h equation, for example e3 in (6), we will assign not only a value, like f;yzzz, but also,what we will 
all a `history-value' or short `history', i.e. e2;yzz�e1;xx. This history of an equationexpresses one equation in terms of other equations, i.e. how it was histori
ally 
omputed doing thealgebrai
 or di�erential Gr�obner basis 
omputation. At the beginning the history of ea
h equationea is ea itself. Whenever a new equation is 
omputed then not only its value but also its history is
al
ulated. For example, when in this example f;yzzz is eliminated from equation (6) using equation(4) then a new equation 0 = e4 is generated where e4 has the value 0 (as all terms 
an
el) and hasthe history value e3 � e1;z where e3 and e1 are repla
ed by their history values. The history of e1 ise1 whereas the history of e3 is e2;yzz�e1;xx giving for e4 the history e2;yzz �e1;xx�e1;z as is shownin (7).In the next se
tion a substantial appli
ation is des
ribed whi
h is suitable to demonstrate theadvantages of the new integration method.9 The appli
ation that led to the development of the syzygybased integration9.1 The problemA problem introdu
ed to the author by Stephen An
o 
on
erns the 
omputation of all 
onservationlaws of the radial SU(2) 
hiral equation in 2 spatial dimensions where the integrating fa
tors are ofat most 2nd order. The equation 
an be written as a �rst order system for two 3-
omponent ve
torsj(r,t), k(r,t): k;t = j;r + j� k (66)j;t = (rk);r =r: (67)Equation (67) is already in 
onservation law form:(rj);t+(�rk);r= 0and the only other known 
onservation law (of energy) has zeroth order integrating fa
tors:rk � [k;t�j;r�j� k℄ + j � [j;t�(rk);r =r℄ = �r2 (j � j+ k � k)� ;t+(�rj � k) ;r= 0 (68)The existen
e 
onditions for 
onservation laws below were generated with the program ConLaw2des
ribed in [12℄. It generates 
onditions for 6 integrating fa
tors Q1; : : : ; Q6 (like the multipliersrk1; rk2; rk3; j1; j2; j3 on the left hand side of (68)). Ea
h of the Qi is an unknown fun
tion of 20independent variables t; r; j;k; l (= j;r );m (= k;r );u (= j;rr );w (= k;rr ). The system 
onsists of18 
onditions of the form 0 = Q1;u1 �Q4;w1 rand 6 
onditions of the form0 = Q3;j1 l1r2 +Q3;l1 u1r2 +Q3;j2 l2r2 +Q3;l2 u2r2 +Q3;j3 l3r2 +Q3;l3 u3r2 +Q3;k1 m1r2 +Q3;m1 w1r2+Q3;k2 m2r2 +Q3;m2 w2r2 +Q3;k3 m3r2 +Q3;m3 w3r2 +Q3;r r2 �Q6;j1 k1r2 �Q6;j1 m1r3 +Q6;l1 k1r�Q6;l1 m1r2 �Q6;l1 w1r3 � 2Q6;u1 k1 + 2Q6;u1 m1r �Q6;u1 w1r2 �Q6;j2 k2r2 �Q6;j2 m2r3 +Q6;l2 k2r�Q6;l2 m2r2 �Q6;l2 w2r3 � 2Q6;u2 k2 + 2Q6;u2 m2r �Q6;u2 w2r2 �Q6;j3 k3r2 �Q6;j3 m3r3 +Q6;l3 k3r�Q6;l3 m3r2 �Q6;l3 w3r3 � 2Q6;u3 k3 + 2Q6;u3 m3r �Q6;u3 w3r2 �Q6;k1 l1r3 �Q6;k1 j2k3r3 +Q6;k1 j3k2r315



�Q6;m1 u1r3 �Q6;m1 j2m3r3 �Q6;m1 l2k3r3 +Q6;m1 j3m2r3 +Q6;m1 l3k2r3 �Q6;w1 j2w3r3 � 2Q6;w1 l2m3r3�Q6;w1 u2k3r3 +Q6;w1 j3w2r3 + 2Q6;w1 l3m2r3 +Q6;w1 u3k2r3 +Q6;k2 j1k3r3 �Q6;k2 l2r3 �Q6;k2 j3k1r3+Q6;m2 j1m3r3 +Q6;m2 l1k3r3 �Q6;m2 u2r3 �Q6;m2 j3m1r3 �Q6;m2 l3k1r3 +Q6;w2 j1w3r3 + 2Q6;w2 l1m3r3+Q6;w2 u1k3r3 �Q6;w2 j3w1r3 � 2Q6;w2 l3m1r3 �Q6;w2 u3k1r3 �Q6;k3 j1k2r3 +Q6;k3 j2k1r3 �Q6;k3 l3r3�Q6;m3 j1m2r3 �Q6;m3 l1k2r3 +Q6;m3 j2m1r3 +Q6;m3 l2k1r3 �Q6;m3 u3r3 �Q6;w3 j1w2r3 � 2Q6;w3 l1m2r3�Q6;w3 u1k2r3 +Q6;w3 j2w1r3 + 2Q6;w3 l2m1r3 +Q6;w3 u2k1r3 �Q6;t r3 � k1Q2r2 + k2Q1r2After introdu
ing new unknown fun
tions xi; yi through ui = xi + yi; wi = xi � yi the 18 shortequations took the form of a total derivative and ea
h one 
ould be integrated on its own but whenthe 
omputed fun
tions were substituted only indire
tly separable equations (ISEs) like (22) wereobtained.2Despite of the initial su

ess in performing these integrations all attempts to 
omplete thesolution of the over-determined system failed with the 1999 version of Cra
k. That this was notsimply a matter of la
king 
omputing power be
ame obvious after extra
ting a small sub-systemof equations for only one of the unknown fun
tions3 
4(t; r; x1; x2; x3; y1; y2; y3) where some of theequations are easy to integrate:0 = 
4;x3x3y2y3 = 
4;x1x2y1y3y3 = 
4;x1x2y1y1y3 = 
4;x1x2x3y1y1 = 
4;x2x3x3x3y1y1y3= 
4;x1x2x3x3x3y1y2y2 = 
4;x1x2x2x3y1y1y2y2 = 
4;x1x2x3x3y3y3y3 �
4;x2x3x3x3y1y3y3= 
4;x1x2x3x3y1y2y2 �2
4;x1x2x2x3y1y2y3 = 
4;x1x2x3x3y1y2 �2
4;x1x2x2x3y1y3 �
4;x1x2x2x3x3y1y3 x3= 
4;x1x2x3x3x3y1y3 x1 � 
4;x1x2x3x3y3y3 +
4;x2x3x3x3y1y3= 
4;x3x3x3y1y3 x1 + 
4;x3x3y1y3y3 y1 � 
4;x3x3y3y3 (69)= 
4;x1x2x3x3y1y2y2y2 y3 + 2
4;x1x2x2x2y1y2y3 �2
4;x1x2x2x3y1y2y2 +
4;x1x2x2x3x3y1y2y2 x3= 
4;x1x2x3x3y1y2y2 y3 + 2
4;x1x2x2x2x3y1y3 x3 + 2
4;x1x2x2x2y1y3 �2
4;x1x2x2x3y1y2= 
4;x1x2x3x3x3y1y2 x1x3 � 3
4;x1x2x3x3y1y2 x1 + 6
4;x1x2x2x3y1y3 x1�
4;x1x2x2x3x3y3y3 x23 + 
4;x2x2x3x3x3y1y3 x23Even the solution or at least simpli�
ation of this sub-system was not possible. The problem wasnot to �nd equations with the form of a total derivative and to integrate them. The problem wasthe growing number of new fun
tions of integration (whi
h did still depend on 7 variables) and theappearan
e of too many only indire
tly separable equations (ISEs).Sin
e 1999 the module for handling ISEs has been improved 
onsiderably. The 
urrent versionof Cra
k (De
. 2001) 
an simplify the above system qui
kly using the 
onventional integrationof total derivatives. Nevertheless, by adding the ability of performing syzygy based integrationsthe 
omputation speeds up further and the solution involves fewer redundant arbitrary fun
tions.Tests des
ribed below show that syzygy based integrations are well suited to be performed alongthe 
omputation of a di�erential Gr�obner basis without the negative side e�e
t of introdu
ing toomany redundant fun
tions. By that Gr�obner basis 
omputations 
an be 
ut short and the risk of amemory explosion be lowered.9.2 A 
omparison of three 
omputer runsBefore des
ribing the details of 3 di�erent 
omputer runs, a few 
omments about the setup have tobe made. The pa
kage Cra
k for solving and simplifying over-determined PDE-systems 
ontainsabout 30 modules for di�erent a
tions to be taken either with individual equations or with groupsof equations of the system. Modules used to solve systems like (69) are2Although ea
h of the ISEs is over-determined on its own, this over-determination 
an not be utilized easilybe
ause there is no independent variable whi
h o

urs only expli
itly that would lead to dire
t separations.3New 
onstants and fun
tions of integration are all 
alled 
i in Cra
k with su

essively in
reasing subs
ript.16



1. Dire
t separation of an equation with respe
t to some variable that o

urs only expli
itly inthe equation.2. Substitution of a fun
tion f either by zero or by at most 2 terms and only if other fun
tionso

urring in these 2 terms depend on fewer variables than f .3. Integration of an equation if it 
onsists of a single derivative with respe
t to only one variable.4. Elimination of a fun
tion f from any equation if f o

urs only algebrai
ally and linearly and iff depends on all variables o

urring in this equation. Substitution of f in all other equations.5. Deleting of any redundant equations as des
ribed on the bottom of the overview in se
tion 3.6. Integration based on a syzygy in 
onservation law form.7. Conventional integration of a PDE but only if suÆ
iently many integrations are possible su
hthat the integrated equation 
an be used for a substitution.8. Indire
t separation of an equation (ISE). (This is a 
omplex step whi
h 
an invoke other dire
tseparations and indire
t separations of resulting equations.)9. Redu
tion of the leading derivative of one equation with the help of another equation orformulation of an integrability 
ondition between two equations. (This is a typi
al step in aGr�obner basis 
omputation.)10. Any integration of any equation even if not 
omplete.These modules are 
alled in a spe
i�
 sequen
e whi
h 
an be 
hosen by spe
ifying a list of numbers,ea
h number representing one module. For example, if in table 1, 
olumn 2 the priority list of run1 is 
hosen to be 1 2 3 4 8 9 7 10 then the modules as numbered above are tried in this order untilone module is su

essful and then they are again tried beginning with 1 and so on. This is only asimpli�ed des
ription of the operation of Cra
k but it is suÆ
ient for the purpose of this se
tion.run priority list # of time # of terms # of redundant fun
tionsof a
tions steps in se
 in equ. (71) of 6 var. of 5 var. of 4 var. of 3 var.1 1 2 3 4 8 9 7 10 1077 124 6 7 16 2 02 1 2 3 4 7 8 9 10 1175 122 12 4 45 23 53 1 2 3 4 5 8 6 9 7 10 362 23 8 2 19 2 0Table 1. A 
omparison of three di�erent runs on the system (69).In table 1 three 
omputer runs are 
ompared. Column 3 gives the number of su

essful 
allsof the modules in the priority lists. Times shown in 
olumn 4 have been measured in a sessionof the 
omputer algebra system REDUCE version 3.7 with 120 MByte memory (although only afew MByte are needed for this 
omputation) on a 1.7 GHz PC Pentium 4 under Linux. Column5 gives the number of terms in the single unsolved equation whi
h in the solution (70) below isthe equation (71). In the remaining 4 
olumns the number of redundant fun
tions of 6, 5, 4, or 3variables is shown. For example, if two fun
tions f(x; y; z) and zg(x) o

ur always together su
hthat a substitution f + zg ! f has the same e�e
t as g ! 0 then g 
an be set to zero without lossof generality.
17



9.3 Con
lusions from the testThe 
entral issue in these runs is, whether integrations (modules 6 and 7) are given a higher prioritythan the formulation of integrability 
onditions (module 9) or a lower priority. If integrability
onditions have a higher priority than integrations, as in run 1, then at �rst a 
omplete di�erentialGr�obner basis is 
omputed before integrations start. The bene�t is that the di�erential order ofequations is as low as possible when integrations start (assuming a total degree ordering is usedin the di�erential Gr�obner basis 
omputation). Consequently fewer integrations are ne
essary andfewer fun
tions will be generated whi
h turn out later to be redundant. The disadvantage is thatthe 
omputation of integrability 
onditions may take very long and blow up the systems size, ormay even be pra
ti
ally impossible.One 
an attempt to give integrations a higher priority at the pri
e of more redundant fun
tionsin the solution. This was done in run 2. The bene�t may be 
onsiderable, only in our small system(69) the Gr�obner basis 
omputation is not expensive at all, so the advantage of early integrationsdoes not be
ome obvious here. But the disadvantage be
omes obvious. Integrating higher orderequations generates more new fun
tions with many of them turning out to be redundant at the end.Finally, in the third run we get the best of both previous runs. Here, early integrations usesyzygies in 
onservation law form as soon as they be
ome available. The lowered di�erential orderof equations redu
es the 
omplexity of the remaining Gr�obner basis 
omputation. Also, be
ausewith ea
h integration at least 2 equations 0 = P i are satis�ed, the number of new fun
tions ofintegration is low and the number of variables these fun
tions depend on is redu
ed. Consequently,only few fun
tions turn out to be redundant in the 
omputed solution as seen in 
olumns 6-9 oftable 1.The following solution is obtained in run 3 after redundant fun
tions have been deleted (byhand) leaving 11 fun
tions of 6 variables, 8 fun
tions of 5 variables and 2 fun
tions of 4 variables.It is equivalent to the solutions returned in runs 1 and 2.
4 = 
100;x2 x3y1y2 + 12
100;x3 x1y23 + 
125; x2x23y1 + 
125;y2 x3y1y3 + 
133;x2 x3y1 + 
133;y2 y1y3+
213;x3 x1 + 
213;y3 y1 + 
100y1y3 � 
109x2x3y1 + 
170 + 
172 + 
173x3 + 
181y3 + 
191 (70)�
192 � 
193x3 � 
194 + 
200 + 
205 � 12
65x23y3 � 
81x3 � 
83All fun
tions depend on t; r and in addition on further variables in the following way:
83(x2; x3; y1; y2); 
81(x2; y1; y2; y3); 
173(x1; x2; y2; y3); 
172(x1; x2; y2; y3); 
170(x1; x2; x3; y2);
194(x1; x3; y1; y3); 
193(x1; y1; y2; y3); 
192(x1; y1; y2; y3); 
191(x1; x3; y1; y2); 
205(x2; y1; y2; y3);
200(x1; x2; y1; y2); 
100(x1; x2; x3); 
125(x1; x2; y2); 
133(x1; x2; y2); 
181(x1; x2; x3);
213(x2; x3; y3); 
230(x1; y1; y3); 
229(x1; y1; y3); 
228(x1; x3; y1); 
65(x2; y1); 
109(x1; y2):The fun
tion 
194 has to satisfy the 
ondition0 = 
194;x3y1 x1 + 
194;y1y3 y1 � 
194;y3 �
228 � 
229 � 
230x3; (71)all other fun
tions are free. The result of the 
onservation law investigation for the SU(2) 
hiralequation in the form (66), (67) is that no other 
onservation laws with integrating fa
tors of at most2nd order exist.More remarks 
on
erning the 
ollaboration of modules:� Syzygy based integration 
an not repla
e 
onventional integration. If equations be
ome de-
oupled then no integrability 
onditions apply and the equations have to be integrated 
on-ventionally if possible. 18



� The usefulness of 
onventional integration relies very mu
h on the eÆ
ien
y of a module forthe indire
t separation (module 8 in the above list). The 
orresponding implementation inCra
k will be des
ribed elsewhere.� The issue of avoiding redundant fun
tions is serious when a system like (69) is only a subsystemof a larger system and the solution of the smaller system is to be substituted in the larger one.Redundant fun
tions would 
ompli
ate the solution of the larger system unne
essarily. On theother hand, the identi�
ation and deletion of redundant fun
tions using a method des
ribedin [13℄, is diÆ
ult and may be more expensive than the solution/simpli�
ation of the systemitself. This method does not prevent redundan
y, it only 
an identify it in the solution.The pa
kage Cra
k is distributed together with the 
omputer algebra system REDUCE. Anewer version 
an be down-loaded from http://lie.math.bro
ku.
a/twolf/
ra
k.10 SummaryAn integration method has been proposed that is appli
able for linear PDE-systems that admitsyzygies, i.e. systems whi
h are overdetermined as a whole or 
ontain an overdetermined subsystem.It therefore 
an not repla
e the straight forward integration of exa
t PDEs but when appli
able ithas a number of advantages:� The information on whi
h the integration is based is taken from syzygies in 
onservation lawform. Syzygies are a by-produ
t of the 
omputation of di�erential Gr�obner Basis.� Be
ause not a single equation is integrated but a number of equations (0 = P i) at on
e, fewerfun
tions of integration, depending on fewer variables are introdu
ed in the pro
ess.� The problem of 
onventional integration to introdu
e redundant fun
tions when integratingwith respe
t to di�erent variables is either prevented or signi�
antly redu
ed.� The new integration produ
es apart from integrated equations also new syzygies whi
h areoften the basis for 
ontinuing the integration further without having to 
ompute new syzygiesthrough a new Gr�obner basis 
omputation.� Syzygy based integration, 
onventional integration and elimination 
omplement one anotherwell in solving overdetermined linear PDE-systems if given the right priorities.
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Appendix A: Continuation of the introdu
tory exampleIn this appendix we 
ontinue the introdu
tory example by performing three more syzygy basedintegration steps. The 
omputation is broken up into items. The number(s) at the start of ea
hitem refer to the line number of the 
orresponding step in the overview at the end of se
tion 3.(32): The remaining system to solve 
onsists of0 = f;xx+f;z (= e2)0 = f;xyz �
1: (= e4)(33),(34): satisfying the identity in 
onservation law form0 = (�e4;x );x +(e2;xy�e4);z(35): with only 2 derivatives.(36): Pro
eeding as in the �rst integration step we now identify as the 
onserved 
urrentP̂ x = �e4;x= �f;xxyz = �Q̂;z (72)P̂ z = e2;xy�e4 = f;xxxy +
1 = Q̂;x (73)(37): and as the new potential Q̂ we either identify or 
ompute using algorithmDivInt in appendixB Q̂ = f;xxy +x
1(39),(40): giving the new equation0 = Q̂� 
2 = f;xxy +x
1 � 
2 (=: e5) (74)with the new fun
tion of integration 
2 = 
2(y).(41),(42): Equation e4 is redundant as it turns up purely algebrai
ally in0 = P̂ z � Q̂;x= e2;xy�e4 � e5;x :(43): Substitution of e4 in (72) gives the new identity0 = �e2;xxy +e5;xx+e5;z : (75)(36): This is as well a divergen
e with only two terms�P x = �e2;xy +e5;x= �f;xyz +
1 = � �Q;z (76)�P z = e5 = f;xxy+x
1 � 
2 = �Q;x (77)(37): and the new potential �Q �Q = f;xy +x22 
1 � x
2 � z
1
20



(39),(40): giving the new equation0 = �Q� 
3 = f;xy +x22 
1 � x
2 � z
1 � 
3 (=: e6) (78)with the new fun
tion of integration 
3 = 
3(y).(41),(42): Now, equation e5 is redundant as it turns up purely algebrai
ally in0 = �P z � �Q;x= e5 � e6;x :(43): Substitution of e5 in (76) gives the new identity0 = �e2;xy +e6;xx+e6;z : (79)(36): This is a divergen
e as well and we will perform the integration 
y
le one more time with�P x = �e2;y +e6;x= �f;yz +x
1 � 
2 = � �Q;z (80)�P z = e6 = f;xy +x22 
1 � x
2 � z
1 � 
3 = �Q;x (81)(37): and the new potential �Q �Q = f;y +x36 
1 � x22 
2 � xz
1 + z
2 � x
3(39),(40): giving the new equation0 = �Q� 
4 = f;y +x36 
1 � x22 
2 � xz
1 + z
2 � x
3 � 
4 (=: e7) (82)with the new fun
tion of integration 
4 = 
4(y).(41),(42): Now, equation e6 is redundant as it turns up purely algebrai
ally in �P z in (81)0 = �P z � �Q;x= e6 � e7;x :(43): Substitution of e6 in (80) gives the new identity0 = �e2;y +e7;xx+e7;z : (83)The 
on
lusion of this example is shown in se
tion 2.1 below equation (20). As argued there thesyzygy based integration of equation (83) is not advantageous as (83) has a 
onservation law formwith 3 derivatives instead of two. Instead one rather integrates (82) with respe
t to y and substitutesf in the remaining equation (5).
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Appendix B: The algorithm DivIntThe following algorithm 
omputes expressions Qij(xn; f�J ) = Q[ij℄ that satisfy DjQij = P i. Thegiven P i = P i(xn; f�J ) are assumed to satisfy DiP i = 0 identi
ally in all f�J .1 Algorithm DivInt2 Input variables: xn, fun
tions: f� and 
onserved 
urrent: P i = P i(xn; f�J )3 Output Qij(xn; f�J ); j > i % satisfying DjQij = P i,4 E; F % E : list of new additional equations5 % F : list of new additional fun
tions6 Body % no summation over double indi
es below7 E := fg; F := fg; Qij := 0; with i; j 2 1; : : : ; p; j > i89 % Integrate all terms with fun
tions f� depending on all variables10 for i := 1 to (p� 1) do11 for j := i+ 1 to p do12 while P i 
ontains a term aiJ�jf�J do % i.e. while any derivative of any f�13 % o

urs that involves �j14 P i ! P i �Dj(aiJf�J )15 P j ! P j +Di(aiJf�J )16 Qij ! Qij + aiJf�J1718 % Integrate all derivatives involving fun
tions f� not depending on all variables19 for i := 2 to p do20 for j := 1 to i� 1 do21 while P i 
ontains a term aiJ�jf�J do % i.e. while any derivative of any f�22 % o

urs that involves �j23 P i ! P i �Dj(aiJf�J )24 Qji ! Qji � aiJf�J2526 % Integrate remaining terms27 for i := 1 to p do28 if P i 6= 0 then29 % integrate ea
h term aiJf�J of P i with respe
t to any one xj 6= xi30 % preferably one xj with �jf� = 0 in the following way:31 if �jf� = 0 then32 q := f�J R aiJ dxj33 P i ! P i �Djq34 if j > i then Qij ! Qij + q35 else Qji ! Qji � q36 else37 Introdu
e a new fun
tion f�(x1; : : : ; xi�1; xi+1; : : : ; xp)38 F ! F [ ff�g39 E ! E [ f0 = �jf� � aiJf�J g40 P i ! P i � aiJf�J41 if j > i then Qij ! Qij + f�42 else Qji ! Qji � f�43 return Qij(xn; f�J ), E (list of new equations), F (list of new fun
tions)22



Explanation of the algorithmLines 9 - 16This part of the pro
edure is suÆ
ient if the input expressions P i(xn; f�J ) do only 
ontain fun
tionsf� depending on all p independent variables x1; : : : ; xp.A typi
al example: If an expression P y 
ontains a term f;z then DyP y (no summation) 
ontains�yf;z whi
h has to be 
an
elled by��zf;y fromDzP z (no summation) to give 0 = DkP k (summation)identi
ally in all fJ . This means P z 
ontains �f;y. In this short example the lines 14 - 16 wouldsubtra
t f;z from P y, subtra
t �f;y from P z and add f to Qyz. There is no prin
ipal di�eren
ebetween P y 
ontaining a term f;z or P y 
ontaining aiJ�zf�J .As both, P i and P j are updated in lines 14 and 15, j does not run over indi
es 1 : : : i�1. Be
auseQii = 0 (Qij is antisymmetri
) there is no need to integrate an i-derivative in P i and therefore jstarts from i+ 1 in line 11.If all terms in all P i 
ontain a fun
tion f� of all variables then any term in any Qij o

urstwi
e, on
e with an xj-derivative in P i and on
e as negative xi-derivative in P j. When the program
ompleted lines 10 - 16, all P i have the value zero and the solution Qij is found (for i < j, valuesfor Qji follow from the antisymmetry).Lines 18 - 42The only possibility that after 
ompleting lines 10 - 16 not all P i are already zero o

urs if somef� do not depend on all variables. That is, for example, the 
ase if fun
tions entered the problemdue to running DivInt previously in earlier integrations. In general, if terms remain in some P iwhi
h ne
essarily depend on less than all variables then one 
an always 
omplete the integrations byintrodu
ing new fun
tions (
olle
ted in a list F in line 38) that have to satisfy additional equations(
olle
ted in a list E in line 39). In order to minimize the number of additional fun
tions andadditional equations the lines 19 - 24 integrate terms that are xj-derivatives in P i (j 6= i) and lines31 - 35 integrate terms by 
hanging the expli
it appearan
e of xj. This is shown in the followingexamples.Example: Independent variables: x; y; z, initial values:P x = A(y; z);y+B(y; z);z +C(y; z) +D(y) +G(z)P y = H(x; z);x+K(x; z);z +L(x) +M(x; z) +N(z)P z = R(x; y);x+S(x; y);y+T (x) + U(y) +W (x; y)Qxy = Qxz = Qyz = 0
ontaining undetermined fun
tions A;B;C;D;G;H;K; L;M;N;R; S; T; U and W . After 
omplet-ing the program up to line 18 the values areP x = C(y; z) +D(y) +G(z)P y = H(x; z);x+L(x) +M(x; z) +N(z)P z = R(x; y);x+S(x; y);y+T (x) + U(y) +W (x; y)Qxy = A(y; z)Qxz = B(y; z)Qyz = K(x; z):After 
ompleting the program up to line 26 the values areP x = C(y; z) +D(y) +G(z)P y = L(x) +M(x; z) +N(z)P z = T (x) + U(y) +W (x; y)23



Qxy = A(y; z)�H(x; z)Qxz = B(y; z)� R(x; y)Qyz = K(x; z)� S(x; y):The loop beginning in line 27 will integrate the remaining terms in P i. The lines 32 - 35 willintegrate the terms D;G; L;N; T; U and lines 37 - 42 the terms C;M;W to obtainP x = P y = P z = 0Qxy = A(y; z)�H(x; z) + yG(z)� xN(z) + F 1(y; z)Qxz = B(y; z)�R(x; y) + zD(y)� xU(y)� F 3(x; y)Qyz = K(x; z)� S(x; y) + zL(x)� yT (x) + F 2(x; z)with a list F of new additional fun
tions F 1(y; z); F 2(x; z); F 3(x; y) and list E of new additionalequations F 1(y; z);y = C(y; z)F 2(x; z);z = M(x; z)F 3(x; y);x = W (x; y)ea
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